
WebGUI Developers Guide

WebGUI Developers Guide

by JT Smith
Frank Dillon
Doug Bell
Graham Knop
Chris Nehren
Colin Kuskie

Copyright © 2008 Plain Black Corporation. All rights reserved.

Printed in the United States of America by Lulu.com.

Published by Plain Black Corporation, 1360 Regent St, #145, Madison, WI,
53715

Plain Black books may be purchased for educational, business, or sales
promotional use, but may not be duplicated, in whole or in part, for any
purpose.

Editor: Kristi McCombs
JT Smith

Cover Design: Darci Gibson

Printing History: July 2008: First Edition
WebGUI Version 7.5

WebGUI Content Engine® and Plain Black Corporation® are registered
trademarks of Plain Black Corporation.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations
appear in this book, and Plain Black Corporation was aware of a trademark
claim, the designations have been noted with a ® or a ™.

While every precaution has been made in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

1

WebGUI Developers Guide

Preface
This version of the WebGUI Developers Guide is intended for developers
working in WebGUI 7.5 or above. It covers everything necessary to take full
advantage of WebGUI's functionality and flexibility. The best of WebGUI's
development team has come together to share the inner workings of
WebGUI, and provide expert lessons on how to use it to your advantage.
Learn about writing custom workflow activities, writing tests, using the
WebGUI API, writing and installing your own assets, and a great deal more.

Table of Contents
Preface..2
WebGUI Request Cycle..9

mod_proxy..10
mod_perl...10
WebGUI..10

URL Handlers...11
Extras...11
Uploads..11
Content..12

Content Handlers...12
Upgrade...12
Operations..12
Setup..13
Assets...13

Output..14
Testing WebGUI..15

Writing Tests in Perl..16
Test::More...17

Testing in WebGUI..23
WebGUI Testing Modules...23

WebGUI::Test::Maker::Permissions...23
WebGUI::PseudoRequest..24
How Good are Your Tests?..24
General Advice for Testing...26
Other Testing Resources..27

The WebGUI API...28

2

WebGUI Developers Guide

The API Docs in HTML...28
Using Perldoc to Read the Documentation...31
Installing Third-Party Modules via CPAN...31

Session...33
User vs Request Session...33
Managing a Session...33
$session->asset...34
$session->config..34
$session->datetime..35
$session->db..35
$session->dbSlave...35
$session->env..35
$session->errorHandler..36
$session->form...36
$session->http..37
$session->icon...37
$session->id...37
$session->output...37
$session->os..37
$session->privilege..38
$session->request..38
$session->scratch..38
$session->server..38
$session->setting...38
$session->stow..39
$session->style...39
$session->url..39
$session->user...39
$session->var...40
Dynamic Loading..41

Writing Macros for WebGUI..42
How Macros Work..43
The Macro Skeleton...44
Hello World...44
Getting Argumentative: Accepting Parameters.......................................46
Now for Something Completely Different..47

Utility Scripts...49
Why Create Utility Scripts?..49
Existing Utility Scripts...49

fileImport.pl..49
rebuildLineage.pl..50
search.pl...51

3

WebGUI Developers Guide

Useful API Functions..51
WebGUI::Session...51

open method..51
config method..52
settings method...52
db method..52

WebGUI::Asset...52
new method...52
newByUrl method..52
getRoot method...52
getLineage...53

WebGUI::User..53
new, newByUsername, newByEmail methods................................53
profileField method..53

A Simple Utility Script : settings.pl...53
Package Maintenance: Short but Powerful...57
Apache Authentication: When a Script isn't a Script...............................60

$ vim apacheAuth.pl..60
URL Handlers..67

The Request Cycle...67
When to Use...68
Configuration..69
Examples ...70

Hello World...70
From the Core..70

Custom Privileges...73
Content Handlers..76

Request Cycle..76
When to Use...77
Configuration..78
Examples..78

Hello World...79
From the Core..79

WebGUI::Content::Referral ...79
WebGUI::Content::Asset..79
WebGUI::Content::Shop..79
WebGUI::Content::Setup...80
WebGUI::Content::Maintenance..80

Handling a Post from an Arbitrary Form..81
Form Controls...83

Hello World...84
A Simple Example: Button...85

4

WebGUI Developers Guide

Getting Attached: the Attachment Control...88
Writing Your Own Form Control...91

Authentication Plugins..94
History..94
General Authentication Structure...94
Writing a Custom Authentication Plugin..95
Auth Constructor..96

$auth->session ..97
$auth->user([$user_object])...97
$auth->userId...98
$auth->username...98
$auth->error([$errorMessage])...98
$auth->warning([$warningMessage])...98
$auth->setCallable(\@callableMethods)..99
$auth->isCallable([methodName])...99
 init()..100

displayLogin()..102
$auth->displayLogin([postMethod, templateVariables])....................102

getLoginTemplateId()..106
login()..107

$auth->authenticate($username);..108
$auth->getParams();..110

logout()..111
Authentication Data..112

Settings..112
editUserSettingsForm()..113
editUserSettingsFormSave()..115

User Data...117
$auth->getParams ..119
$auth->saveParams($userId,$authMethod,$propertiesHashRef).119
$auth->deleteParams()..120
$auth->deleteSingleParam($userId,$authMethod,$fieldName)....120

Creating User Accounts...121
editUserForm()..121
editUserFormSave()..122
createAccount()..124
createAccountSave()..128

$auth->validUsername($username);...131
displayAccount()...132

$auth->displayAccount(postMethod,[templateVariables])............132
deactivateAccount()...136
$auth->deactivateAccount([postMethod])...136

5

WebGUI Developers Guide

deactivateAccountConfirm()..137
Creating Custom Methods...138
Extending Existing Authentication Plugins..139
Installing Your Authentication Plugin..140

Manually Installing Your Authentication Plugin..................................140
Automating Your Authentication Plugin Installation...........................141

Workflow Activities..152
The Workflow Engine..152

Steps of WebGUI Workflow...152
Synchronicity..153
Workflow Engine Components..153
Spectre and WebGUI Communicate...154

WebGUI::Workflow::Activity API...161
definition()...161
States...162

return $self->COMPLETE;...162
return $self->ERROR;..162
return $self->WAITING;..162

execute() ..163
WebGUI::Workflow::Instance API...163

setScratch()..164
getScratch()..164
deleteScratch()...164

Rules to Work By..165
Workflow Activity Examples...165

Hello World...165
Email Poll Example...166

Functional Specification..166
Technical Specification..167
The Code..167
Configuration...171

Assets...172
The Bare Necessities: a Cliched Example...172

Definition..172
tab..173
fieldType...173
defaultValue..174
label..174
hoverHelp...174
properties...174
assetName...175
icon...175

6

WebGUI Developers Guide

tableName..175
className...175
autoGenerateForms...175

Create the Database Table...175
View Method..176
Add the Asset to the Configuration Table..177

Hello World...177
Adding a Template..178

getTemplateVars...180
processTemplate..181
prepareView ...182

The Edit Form...185
getEditTabs...185
getEditForm..186
processPropertiesFromFormPost..187
www_edit..188

More Definition Magic: Filters..190
Tips, Tricks, and Things Left Unsaid..191

Lineage...193
The getLineage Method...194
Query the Asset Tree..195
addChild...200
Rank and Depth..201

Writing Wobjects...202
History..202
What is a Wobject?...203
Getting Started...205

Writing a Functional Specification...205
Writing a Technical Specification...206

Building Your Wobject..207
Hello World...207
Example: Recipe Catalog...209

Installing Your Wobject...212
Building Your Wobject..220
www_ methods...223
Container Wobjects..229
Finishing Up..230
Wobject Inheritance..234

Internationalization..235
Placeholders and i18n..238

Help...239
Template Variables..239

7

WebGUI Developers Guide

Related and ISA..241
Writing SKU's..243

API Highlights...243
addToCart()...243
Event Handlers...244
The Numbers..244
Display Helpers..245

SKU's as Products...245
Special Methods..245
Book Example..245

Recurring SKU's...253
Special Methods..253
Association Dues Example..254

SKU's as Coupons...262
Special Methods..262
Member Discount Example..263

Writing Payment Drivers...269
API Highlights...269

The Master Classes..269
PayDriver Basics..270
Recurring Methods...270

Karma Payment Example...270
Writing Shipping Drivers...276

API Highlights...276
The Master Classes..276
The Basics..276

Free Shipping on Big Orders Example...277
Appendix 1: Advanced Install Scripts for Assets.......................................282
Appendix 2: Writing Patches for WebGUI..291

Developing Against a Release..291
Developing With the Latest Code..292

Index...294

8

WebGUI Developers Guide

WebGUI Request Cycle

9

WebGUI Developers Guide

The WebGUI request cycle is the path that a user request from the browser
takes through WebGUI's internals. In general, the path goes from the
browser to mod_proxy, to mod_perl, to a URL handler, then a content
handler, then an asset, and back to mod_perl, mod_proxy, and is displayed
in the user's browser.

mod_proxy

The standard way of running WebGUI is behind a reverse proxy. Because of
the large amount of code used by WebGUI, the mod_perl server takes up a
significant amount of memory. Using a smaller process to handle the
simpler request, such as file access, allows the system to run much faster.
This isn't a required part of WebGUI, however, and can be configured by
the individual system administrator.

mod_perl

From the reverse proxy, the requests for dynamic content (the most
important part of WebGUI) are forwarded to a server using mod_perl.
mod_perl is the Perl interface to Apache©, and allows complete control
over how Apache handles these requests. This is where all of WebGUI's
code lives and is the essential part of the system. Based on the Apache
configuration directives (usually virtual host sections), a WebGUI base
directory and configuration file is chosen for the request. WebGUI is
registered as an Init handler, where it will set itself as a handler for other
phases of Apache's request processing.

SetHandler perl-script # Tell Apache we are using perl
PerlInitHandler WebGUI # Register WebGUI for Init
PerlSetVar WebguiRoot /data/WebGUI # List the location of the WebGUI code

and config
PerlSetVar WebguiConfig www.example.com.conf# List the configuration file to use

WebGUI

The configuration file listed is the first main area used to control WebGUI. It
contains essential information such as the database to connect to, the
macros to use, and the assets to make available. When developing add-
ons for WebGUI, adding it to the configuration file is usually one of the
steps. The WebGUI configuration file is also where you'll find the list of URL
handlers to be called.

10

WebGUI Developers Guide

URL Handlers

URL handlers allow you to plug functionality into WebGUI that will handle
all functions on a given URL or group of URL's. See the URL Handlers
chapter for additional details.

Extras

The first URL handler is the PassThru handler which deals with the /extras
folder, where WebGUI stores sharable static content like images and
javascript files that are used throughout the system. Three other pieces of
information included in the configuration file are the extras, passthrough,
and uploads locations. Extras include the major javascript libraries used by
WebGUI, such as YUI© and TinyMCE©. These are just static files on the

filesystem, so WebGUI directs Apache© to serve them as such.
Passthrough URL's are handled the same way, but don't have any
particular meaning to WebGUI. These could be other areas with static files,
or any other type of handler configured in Apache©. When a proxy server is
in use, it would usually be configured to handle these locations to decrease
the load on the server.

Uploads

Uploads are another area with static files, but are managed by WebGUI.
Often they are set up to be served by the proxy server; however, this places
limits on them. WebGUI attaches security information to uploads, but if the
handling of these files is short circuited by the proxy server anyone would
be able to access them. Uploads are stored in randomly generated path
names which provides some obscurity, but for truly sensitive data real
permissions handling is needed. Of course, this extra handling isn't without
a price. The extra handling to enforce the permissions imposes significant
slowdowns.

To handle security on uploads, the ID of the group with access to the file is
stored in a file named .wgaccess, which is stored in the same location as
the file. Upon retrieving the group ID, WebGUI first checks if it is the
Everyone group. If so, it instructs Apache to serve these files. For any other
group, though, it has to find the group membership information, which
means creating a WebGUI session to read the information out of the
database. The session will also determine the currently logged in user,
which is then compared to the group listed in the access file. From here,
either the file or a forbidden error is returned to the user.

11

WebGUI Developers Guide

Content

The Content URL handler is another plug-in to the URL handlers system.
Content handlers are easier to write, and instead of working from specific
URL's, they can come into play by cookies, URL's, form parameters, or any
number of other things. The next section in this chapter talks more about
the content handlers that come with WebGUI, and you can learn more
about them in the Content Handlers chapter.

Content Handlers

After handling as many cases of static files as possible, a database
connection is needed for any further processing, and this is where content
handlers come in. The next step is to initialize a WebGUI session. Creating
the session uses the database information from the configuration file and
the Apache request object. From this it determines if the user has an active
browser session and retrieves WebGUI's general settings.

Upgrade

As part of WebGUI's upgrade process, it saves a setting in the database
marking the site as under maintenance. If this has been set, it will stop
processing and display a maintenance screen to users. This is to prevent
the code from operating on a different database structure than it was
designed for, resulting in possible errors or even data corruption.

Operations

Operations are the first section where major work is done. These are used
for anything in WebGUI that doesn't pertain to an Asset. They are called by
the client by including op=<operation name> in the query string. The
majority of operations are administrative functions, such as the User and
Group management systems. The workflow and scheduler system works
through operations as well, sending and receiving information from
Spectre. Authentication and user profile editing is also done through
operations. Operations work through a fixed list defined in the
WebGUI::Operation module. This list links each operation name with the
perl module that has the code for it. For example, the line:

'editGroup' => 'WebGUI::Operation::Group',

This line defines that a URL request ending with ?op=editGroup will be

12

WebGUI Developers Guide

handled by the WebGUI::Operation::Group module. It will call the sub
www_editGroup, giving the session object as the first parameter. If needed,
the module will automatically be loaded. After doing whatever processing is
needed, the operation can return output to the client. Alternately, it can
return nothing and WebGUI will continue processing the request as if there
had not been an operation.

Setup

Setup mode is another special state in which WebGUI can be. This is set
when initially creating a WebGUI site. When in setup mode, the client is
shown a screen allowing them to set the website's name and define the
administrator account. It also includes the Site Starter, where a simple
custom theme can be defined. Setup mode will automatically be turned off
when this is complete.

Assets

Next is the most important processing area in WebGUI: Assets. Each asset
on the site is addressed by a unique URL. WebGUI will use this URL to find
and instantiate the asset. If the URL doesn't match any of the assets in the
database, WebGUI will do one of two things. If the user is currently in
admin mode, s/he will be prompted to create a new asset if desired.
Otherwise, WebGUI continues processing, but uses the asset listed in the
Admin Settings screen as the “Not Found” page.

Once it has determined that the asset exists, it checks the HTTP cache
headers. These headers include the last date and time the client checked
for content at a given URL. If the most recent revision of the asset is older
than the date sent by the client, there is no need to re-send the same
content to the client, so WebGUI returns an HTTP 304 Content Not
Modified message.

At this stage, the asset has been determined and it is known that the client
needs to be sent the content. WebGUI will check if an alternate entry point
has been specified using the func query parameter. If a function has been
specified, the www_func method will be called to generate the output. If
not, or if the function is otherwise invalid, www_view will be used. This
method is responsible for generating the output for the asset. If a function
was specified, but didn't output anything when called, it will again fall back
on the www_view method.

13

WebGUI Developers Guide

Output

The asset or operation has several options for handling its output. The
most common method is to use the session's output object. With this, the
asset outputs content directly to the client, and then needs to return the
magic value “chunked”, indicating that the output has been delivered. This
allows the asset to output larger amounts of data without loading it all into
memory at once. The output object will also process macros. Although
specific assets use the macro API to process them earlier, macros are
generally processed immediately before delivering the content to the client.
If WebGUI finds the value “chunked,” it stops processing the request, as
there is no more work to be done.

The next option the asset has for output is to point to a static file on the
filesystem. In this case, it tells the session what file it wants to output. If
WebGUI is configured to enable streaming these files, it will tell Apache the
location of the file and instruct it to serve it.

The last option available for output is a redirect. Similar to a file, the asset
needs to tell the WebGUI session it wants to perform a redirect. When
getting to this stage, it will output the HTTP header needed to direct the
client to the new URL.

If the asset hasn't specified any of these special cases, it is expected to
return the full data to send to the client. That data is then sent to the client,
which is the last stage of the request cycle.

14

WebGUI Developers Guide

Testing WebGUI
Most likely, you're reading this book because you're a developer - a hacker.
You are gifted in logical thinking, problem solving, caffeine consumption,
computer programming, handling sleep deprivation, system administration,
typing fast and drooling over the latest in hardware. The thought of
meetings, dealing with users (or managers) and writing documentation are
probably not high on your list of priorities. Testing your software falls in the
same category, but past experience has shown that not testing can be
severely limiting in your career. The good news is that there is a way to
make software testing easier, and even fun.

Testing has usually been done by hand and involves installing the software,
resetting the database, restarting Apache, firing up a browser, logging in,
turning on admin mode, adding and configuring the asset, committing the
asset, adding users and groups for permissions, checking all the screens
and options... are you frustrated just thinking about it? And if that weren't
enough, with each change to your code, you have to restart that whole
process again. It is also a process fraught with problems, because if you
forget a step, you might miss a bug.

Automated software testing helps makes the process easier, by allowing
you to do all those things with code. That's right. You write code to test
your code. This is actually a good thing, because you're good at writing
code. You write a test once, and then run it again and again, and it will do
the same thing every time. No more clicks, no more wondering about
whether you did things in the right order or dropped a step.

Your tests can also function as a kind of documentation, since other
developers can read your tests and see how you expect your code to be
used. If bugs are found, then you can write tests to duplicate the bug and
make sure that it gets fixed, and perhaps more importantly, that it stays
fixed in the future as libraries change, or
other people maintain your code. You can
write the tests before you write your code.
When all the tests pass, you're done!

Hopefully, this has whet your appetite and raised your interest in automated
testing. This chapter is devoted to showing you how it's done.

15

This is called “test driven
development, and it is a part of
Extreme Programming.

WebGUI Developers Guide

Writing Tests in Perl

WebGUI is written in Perl, and all of its tests
are written in Perl. There is a whole set of
testing modules in Perl which provide
methods for simple, scalar tests, testing data
structures, simplified browser testing and
even automating the writing of tests. These
different modules all emit output using a
standard called TAP (Test Anything Protocol).

The example above shows a sample TAP output. TAP is a very simple
format with five main parts:

1. Test Plan: At the beginning is the number of tests that are expected
to be run. This is set in the test script, and helps any program that
post processes the output to know if the test died before all tests
were run.

16

In the future, to test AJAX
and other functions,
some of the tests may be
written in Javascript
using Selenium© or
some similar browser-
based automated testing
framework.

1..3

ok 1

not ok 2

Some test comment

ok 3 - Adding an Asset

Test plan

Test number

Test status,

pass

or fail

Test specific comment

Diagnostics

WebGUI Developers Guide

2. Test Status: Each test outputs a simple ok or not ok message,
depending on whether the test passed or failed.

3. Test Number: The testing module automatically takes care of
numbering the tests. Since comments in tests are not required by
the format, this can help to identify tests that are failing.

4. Test Specific Comments: Optional test specific comments can give
details about each test, such as what is being tested. This helps a lot
in debugging tests that fail, and I strongly encourage ("strongly
encourage" were the words my Dad used to say when he meant,
"Do this or you'll get whupped.") you to write descriptive comments
for each and every test that you write.

5. Diagnostics: Diagnostics can be created by the test to show why it
failed: "Expected to get an Asset, but got back a User object
instead," or added by the test script to show sections, debugging
output, or anything else.

TAP is a very human readable format, but going through the output of
hundreds of test scripts, where each script has 50 or so tests, is neither
easy nor fun. So, in addition to testing modules to help you generate TAP,
there are test harnesses which take care of running sets of test scripts and
summarizing their output.

yourTest...... Failed 1/3 subtests

Test Summary Report
foo.t (Wstat: 0 Tests: 3 Failed: 1)
 Failed test number(s): 2
Files=1, Tests=3, 0 wallclock secs (0.02 usr + 0.01 sys = 0.03 CPU)
Result: FAIL

The above example shows the output of a test harness called prove.
Depending on the version of the Test::Harness module installed with Perl
on your system, this output can be different. Now that you've seen TAP,
let's see how to generate it with Test::More.

Test::More

Test::More is the workhorse of Perl testing, providing a whole slew of
testing subroutines. However, before you begin using them, you need to

17

WebGUI Developers Guide

generate the test plan. This can be done either when you use the
Test::More module, or later using the plan subroutine.

use Test::More tests => 5;
OR
my @testData = generatedTests();
plan tests => 15 + scalar @testData;

Using the plan subroutine gives you the freedom to calculate the number of
tests. For example, you may need to test each file in a directory, or you
may have data driven tests as shown above. Regardless of which method
you choose, you're now ready to start writing tests.

The most basic test method is called ok.

ok($test, 'Test passed');

If $test is true (as Perl defines true), then the test prints "ok". Otherwise it
prints "not ok". In both cases, the test output is automatically numbered for
you, and the comment 'Test passed' is appended to the output.

You can test everything with ok. All that you need to do is perform the
comparison yourself and then test the result of the comparison. To test for
falseness, just invert the variable.

my @sons = $family->getChildren;
my $hobbyCheck = $sons->[1]->getHobby eq 'Trains';
ok($hobbyCheck, 'Second son still likes trains');
my $match = ($home =~ /kids/);
ok($match, 'The kids are in $home');
ok($sons->[0]->bouncy, 'My first son is bouncy');
my $ageDifference = $sons->[0]->getAge - $sons->[1]->getAge - 2;
ok(!$ageDifference, 'Sons are two years apart in age');

That works, but it has a few problems:

1. It's awkward. The numeric check for the difference in ages had to be
coerced into a boolean check, and then logically inverted to make
the test pass.

2. It uses a lot of temporary variables. Now, strictly, they did not have

18

WebGUI Developers Guide

to be created, but if the test fails, it is a lot easier to print them out
when they are in separate variables, rather than "flattened" into the
first argument of ok.

3. When the test fails, it just prints 'not ok', and not why, since ok is
just a boolean test.

Fortunately, Test::More provides several more testing subroutines that fix
those problems.

my @sons = $family->getChildren;
is($sons->[1]->getHobby, 'Trains',

'Second son still likes trains');
like($home->status, qr/kids/, 'The kids are in $home');
ok($sons->[0]->bouncy, 'My first son is bouncy');
cmp_ok(
 $sons->[0]->getAge - $sons->[1]->getAge,
 '==', 2,
 'Sons are two years apart in age'
);

Most of your tests will use is and like :

is($test, $expected, $comment);
like($test, $regexp, $comment);

is does a string comparison between $test and $expected., almost the
same as doing

ok($test eq $expected, $comment);

except that the diagnostics are better if the test fails.

is($youngSon->wantsToEat, $youngSon->askedFor,
 'Young son asked for a hot dog');
not ok 1 - Young son asked for a hot dog
Failed test 'Young son asked for a hot dog'
at foo.t line 8.
got: 'hot dog'
expected: 'pizza'
Looks like you failed 1 test of 1.

19

WebGUI Developers Guide

If you had used ok instead of is, $youngSon would still be having a fit, but
now you understand why.

There is also an inverted form of is, called isn't (for those of you who are
developers and students of grammar, isn't will Do What You Mean). isn't
passes if the first two arguments are not equal, as strings.

For checking parts of a string or for doing anything more complex than a
simple string comparison, you can use regular expressions with like.

like($olderSon, qr/$father/,
 'Just a hack off the old block');
not ok 1 - Just a hack off the old block
Failed test 'Just a hack off the old block'
at foo.t line 10.
'blue-eyed'
doesn't match '(?-xism:short-tempered)'
Looks like you failed 2 tests of 2.

The first argument to like is a literal or variable. The second argument is a
regular expression that will be matched against the first. If the test fails, as
shown above, then the diagnostics will show both the actual text and
regular expression that were used in the test, in case they were dynamic,
as in the example. As with is, there is a negated version of like called unlike,
which passes if the text does not match the regular expression.

cmp_ok is a more general version of is. is always does a string comparison
on the two values, checking them for equality. cmp_ok allows you to
choose how the comparison takes place, either as strings or numbers.

cmp_ok($test, $operator, $expected, $comment);

cmp_ok allows you to get around problems with comparing floats versus
integers.

is('2.00', '2', 'Float vs integer equality in strings');
cmp_ok('2.00', '==', '2', 'Float vs integer equality as numbers');
not ok 3 - Float vs integer equality in strings
Failed test 'Float vs integer equality in strings'
at foo.t line 12.

20

WebGUI Developers Guide

got: '2.00'
expected: '2'
ok 4 - Float vs integer equality as numbers

As strings, '2.00' and '2' are quite different, but numerically they are the
same. Any of the standard relational operators can be passed to cmp_ok
allowing you to say things like "five or more", or "fewer than 2".

cmp_ok($wife->trips_taken, '>=', '5', 'Wife is happy');
cmp_ok($youngSon->timeouts, '<', '2', 'Young son is happy');
cmp_ok($olderSon->trains_ridden, '>=', '3', 'Older son is happy');

Finally, it's still okay to use ok, but only if you're checking truthfulness or
falsehood, and not for specific values. After all, if what you're testing says
that it returns false, then it could return 0, the empty string '' or undef, and
change what it returns in various versions of the code.

Up to this point, all of the tests shown have been for scalar variables. Lest
you think that hashes, arrays and objects have been neglected, it's time to
point out Test::More's cmp_deeply. It's good for quick, surface checks of
data structures. However, the Test::Deep module provides methods for
object method checking, order insensitive array checks, and many, many
more tests with better diagnostics than cmp_deeply provides.

Test::More provides several other methods for tests; you should spend time
reading the POD for the module. More importantly, Test::More provides
ways to manage sets of tests.

As you begin writing tests, you'll find code that causes your test scripts to
crash, which prevents any tests from running after that point. For example,
the code in the earlier example actually throws an exception a few seconds
after returning "pizza". You know that $youngSon should not throw an
exception after being given what he asked for, but you don't have time to
go and diagnose what's going on right now, so you decide to skip the test:

SKIP: {
skip "Avoiding food conflicts", 1 if $menu_has_pizza;
is($youngSon->willEat, $youngSon->askedFor,
 'Young son asked for a hot dog');
}
ok 1 # skip Avoiding food conflicts

21

WebGUI Developers Guide

Skipping a test, or a set of tests consists of two parts. First, you mark the
tests that you want to skip by placing them in a named SKIP: block. Inside
the SKIP: block, you use the skip subroutine to give a reason why the tests
will be skipped, and to define how many tests will be skipped. Skipping can
be made optional by using a conditional with the skip statement. In our
case, if there's no pizza on the menu, it's safe to run the test since
$youngSon won't ask for it after saying he wants a hot dog.

The skipped tests will not be run, thus avoiding any potential problems (so
long as $youngSon doesn't decide he'll eat a hamburger instead).
Test::More will generate the requested number of lines of TAP output, with
the tag skip and the reason for skipping, rather than the comments for each
test.

You may also want to handle tests that are failing, and you know that they
will fail. For example, consider the first test in. In September, with the fifth
trip of the year set to beautiful Madison, Wisconsin in October, I don't want
the test to continue to fail. In retrospect, I should have used a different
method in the Wife class rather than trips_taken. Something like
trips_planned would have been much better, but the Wife class doesn't
have that method yet. Until then, the test can be marked as passing, even if
it actually fails.

First, you place the test inside of a named TODO: block. Then inside of
there you localize the $TODO variable and assign to a string which explains
why the tests are marked as TODO. When the test runs, the contents of
$TODO will be appended to the test comment and the test will be counted
as passing.

TODO: {
local $TODO = 'Need to add a trips_planned method to $wife';
cmp_ok($wife->trips_taken, '>=', '5', 'Wife is happy');
}
not ok 1 - Wife is happy # TODO Need to add a trips_planned method to $wife
Failed (TODO) test 'Wife is happy'
at foo.t line 26.
'4'
>=
'5'

22

WebGUI Developers Guide

Testing in WebGUI

Now that you've learned methods for writing tests, you need to know how
to handle the WebGUI specific parts of testing. The most important thing,
as you've seen from the earlier chapters in this book, is that you absolutely
must have a session variable. You can't do anything in WebGUI without a
session variable (that's not strictly true, since you can call some functions
out of WebGUI::Utility, but that's not all that interesting).

A lot of work has been put into making WebGUI testing as easy as
possible, and that work is encapsulated into WebGUI::Test. It will create
and destroy a session variable for your tests, tell Perl how to find the
WebGUI library, and provide convenience methods for getting to several
files and directories, such as the WebGUI library and root directories, the
testing collateral directory and the WebGUI configuration file that was used
to create the session.

To get access to all of that, you need two things:

1. Use the WebGUI::Test module in your tests. If you build your tests
starting with the test skeleton, /data/WebGUI/t/_test.skeleton, you'll
be set!

2. Set the WEBGUI_CONFIG variable, to the absolute path to the
WebGUI config file that you want to be used for your tests.

WebGUI Testing Modules

Included here are a number of WebGUI Testing Modules and some
examples to help illustrate them.

WebGUI::Test::Maker::Permissions

This module is designed to make it easy to test user level permissions for
web access methods, such as WebGUI::Asset::www_view and
WebGUI::Operation::www_addGroupsToGroupSave. Simply create an
object, configure it with a session variable, the subroutine or method to call
for testing, and lists of users that you expect to pass the test, and to fail
them. The object does all the hard work for you.

In the example below, a WebGUI::Test::Maker::Permission object was built,
and then set up to test WebGUI::Asset's canAdd method. Admin (userId 3)
and a test user in a group will be able to call the method. Visitor (userId 1)

23

WebGUI Developers Guide

and a different test user will not. The object will run eight tests, two for each
user. In the first test, the requested user is set as the default user in the
session object. The second test tests sending that user's userId as a
parameter to the method.

my $canAddMaker = WebGUI::Test::Maker::Permission->new();
$canAddMaker->prepare({
 'className' => 'WebGUI::Asset',
 'session' => $session,
 'method' => 'canAdd',
 'pass' => [3, $testUsers{'canAdd group user'}],
 'fail' => [1, $testUsers{'regular user'},],
});
$canAddMaker->run;

WebGUI::PseudoRequest

This handles almost everything that a real Apache2::Request object does in
WebGUI, including managing headers, setting and retrieving the request
status, form processing and file uploads, except you don't have to have a
httpd server process running to make it work. A WebGUI::PseudoRequest
object is put into your session variable automatically when you use
WebGUI::Test. This is more convenient than creating one when you need it
and allows you to easily test most of WebGUI.

WebGUI::PseudoRequest has one known shortcoming. If the session
variable has a valid request object, then some of the WebGUI core code
will try to load mod_Perl code for handling cookies or to actually send the
HTTP header information. However, this is only encountered infrequently,
and having a valid request object outweighs the occasional inconvenience.
The way to handle those cases is to set the request object inside the
session to undef.

$session->request->uploadFiles(
 'oneFile',
 [WebGUI::Test->getTestCollateralPath('WebGUI.pm')],
);
is($fileStore->addFileFromFormPost('oneFile'), 'WebGUI.pm', 'Return the name of the
uploaded file');

How Good are Your Tests?

Eventually, you'd like to know how effective your tests are. Have you
wasted effort in writing too many tests? Where do new tests need to be

24

WebGUI Developers Guide

written? These questions are all answered by analyzing code coverage. In
code coverage, some "third-party" tool keeps track of every line of code
that gets run during the test and in the end. It tells you:

1. Which subroutines were called and which were not.

2. If all conditionals walked down both the true and the false branches.

3. Whether all pieces of a complex conditional statement were
exercised. For example, if your code uses $a || $b, did it test $a true,
$b true, and $a and $b true?

In Perl, the "third-party" tool is called Devel::Cover. It analyzes all of the
metrics above, as well as tell you if your code has enough POD and gives
you an aggregate overall score for your code. Devel::Cover has good
documentation, and you can refer to it for details on filtering which code is
analyzed and which isn't.

For a quick reference, here's how to run a coverage test across the whole
WebGUI test suite.

> cover -delete ## To delete old data in the coverage database
> env WEBGUI_CONFIG=/data/WebGUI/etc/mywebgui.conf Perl5OPT='-MDevel::Cover'
prove /data/WebGUI/t
> cover ##to generate the coverage report in HTML format.

Use the coverage report in the coverage directory, cover_db/coverage.html,
to see which areas still need tests.

However, even if the coverage report shows that a module has 100%
coverage, it doesn't mean that there are no bugs in the code. First of all,
remember that the quality of coverage is determined by the quality of your
tests. If your test has a hole in it, even though it covers the code, there
could still be a bug in there. Regular expressions are another place to
watch out. As long as you pass one piece of data through the regexp,
Devel::Cover will consider it covered. However, the regexp may not be fully
exercised. If you have code that divides two numbers, Devel::Cover will
report it as covered too, but it won't check to see if you've handled divide
by zero errors.

Use Devel::Cover to determine what code needs to be covered more
thoroughly, but never forget to write edge and corner tests, too. Your goal
should be not only to have 100% coverage of your tests, but to have

25

WebGUI Developers Guide

strong, robust tests as well.

General Advice for Testing

● Never, ever run a test on a production website, unless you have a full
back-up of:

● the database

● the uploads area

● Never run a test with a config file without having a full back-up of the
config file. The tests will modify the config file, and in the process,
any comments will be stripped from the file.

● Always start a new test with the test skeleton file, _test.skeleton.

● Always clean up after your tests. Delete any users, groups, assets,
version tags, workflow activities, database tables or entries, ads, ad
spaces, products, macros or storage locations that you create for
tests. If you change a config file or a setting, put it back in its
"normal" state at the end of the test in an END block. This always
resets the environment into a known state for the next test.

● Some assets need to be committed before you can add children to
them. Get in the habit of creating an asset, then committing it, then
adding children to it. The children should be contained in their own
version tag. Don't forget to rollback all the version tags at the end of
your test to clean them all up.

● Every test should have a plan, so that if it dies it can be detected in
the test run.

● Use good programming techniques. Don't cop out on code quality
just because you're writing a test.

● Choose the right test for the right job. My examples in the beginning
of the chapter were corny and contrived, but they showed how using
the right test method can make your test more robust and provide
verbose diagnostics in the event of a failure.

● Remember that in the Scientific Method that success does not prove
your theory. When developing new tests, make sure that they fail
when you expect them to. If they don't then the theory that your

26

WebGUI Developers Guide

tests protect against failure is false!

Other Testing Resources

“Test::Tutorial”
by Michael Schwern and the Perl QA Dancers
An excellent introduction to basic testing.
http://search.cpan.org/search?query=Test%3A%3ATutorial&mode=all

Perl Testing - A Developer's Notebook
Ian Langworth and chromatic
O'Reilly Publishers
The canonical book on Perl testing, covering many different modules and
approaches to testing with a very, "How do I get this done?" approach.

Perl Best Practices
Damian Conway
O'Reilly Publishers
Chapter 18 goes much more in depth as to why you should test, and
covers some good strategies for testing.

“Devel::Cover”
Paul Johnson
http://search.cpan.org/~pjcj/Devel-Cover

“Test::Deep”
Fergal Daly
http://search.cpan.org/~fdaly/Test-Deep

27

WebGUI Developers Guide

The WebGUI API
All software needs documentation, and WebGUI is no exception. WebGUI
has excellent API documentation available. The point of this chapter isn't to
describe how to do things with the WebGUI API, but rather to describe
where to find its documentation, how to access that documentation, and
how to install Perl modules via CPAN to facilitate custom development
work. If you'd prefer browsing the API docs in a web browser, you can
access the documentation online or generate the HTML documentation
yourself.

The API Docs in HTML

There are two ways to access the WebGUI API docs via HTML, and thus
via a web browser. The first is to use the site which Plain Black has set up
for this. You can get to the documentation for the version of WebGUI you're
using by pointing your browser at
http://www.plainblack.com/downloads/builds/major.minor.patch-
releaseType/api/ . major.minor.patch corresponds to your WebGUI version.
For example, if you're running version 7.4.22-stable, you'd browse to
http://www.plainblack.com/downloads/builds/7.4.22-stable/api/ .
Conversely, if you're running 7.5.3-beta, you'd go to
http://www.plainblack.com/downloads/builds/7.5.3-beta/api/ .

If you'd rather generate the documentation for local / offline viewing, you
can do that too. The following Perl program will recurse through the
/data/WebGUI directory and create the API docs at /data/docs.

#!/usr/bin/Perl

#---
WebGUI is Copyright 2001-2008 Plain Black Corporation.
#---
Please read the legal notices (docs/legal.txt) and the license
(docs/license.txt) that came with this distribution before using
this software.
#---
http://www.plainblack.com info@plainblack.com
#---

strict and warnings are obligatory

28

WebGUI Developers Guide

use strict;
use warnings;

pull in modules that we use
use Getopt::Long;
use File::Path;
use Pod::Html;

set defaults that the user can override
my $webGUIRoot = '/data/WebGUI';
my $pod2html = '/usr/bin/pod2html';
my $rootDirectory = '/data/docs';
my $filterContent;

get those overrides
GetOptions(

'pod2html=s' => \$pod2html,
 'webGUIRoot=s' => \$webGUIRoot,
 'filterContent' => \$filterContent,
 'rootDirectory' => \$rootDirectory
);

my $basedir = "$webGUIRoot/lib/WebGUI";

start recursing
buildFromDir();

sub buildFromDir {

 # get our current directory. default to nothing on the first call.
 my $dir = shift || "";

 # grab all the files in this directory
 opendir my $currentDirectory, "$basedir/$dir";
 my @files = readdir $currentDirectory;
 closedir $currentDirectory;
 @files = sort @files;

 # need to make the directory in the docs tree if this is the first one
 my $first = 1;
 foreach my $file (@files) {
 if ($file =~ /(.*?)\.pm$/) {
 # first one; make that directory

29

WebGUI Developers Guide

 if ($first) {
 print "Making API docs directory: $rootDirectory/api/$dir\n";
 mkpath(["$rootDirectory/api/$dir"]);
 $first = 0;
 }
 # finally, generate the output
 my $outfile = "$rootDirectory/api/$dir/$1.html";
 print "Generating docs for $basedir/$dir/$file\n";
 pod2html('--quiet', '--noindex', "--outfile=$outfile",
 "$basedir/$dir/$file");

 # filter it if told to
 filterContent($outfile) if $filterContent;
 }

 # looks like we got a directory, recurse into it
 elsif ($file ne "." && $file ne "..") {
 buildFromDir($dir."/".$file);
 }
 }
}

sub filterContent {

 # get the current file
 my $file = shift;
 print "Filtering content for $file\n";

 # slurp in its contents
 my $content = do {
 open my $fh, '<', $file;
 local $/;
 <$fh>;
 };

 # prettify it
 $content =~ s/NOTE:/NOTE:<\/b>/ig;
 $content =~ s/TIP:/TIP:<\/b>/ig;
 $content =~ s/<a .*?>//ig;
 $content =~ s/<\/a>//ig;
 $content =~ s/<hr>//ig;
 $content =~ s/<head>(.*?)<\/head>//ixsg;
 $content =~ s/INDEX BEGIN.*?INDEX END//isg;

30

WebGUI Developers Guide

 $content =~ s/SYNOPSIS/Synopsis/g;
 $content =~ s/DESCRIPTION/Description/g;
 $content =~ s/METHODS/Methods/g;
 $content =~ s/ <DT>
 (.*?)<\/STRONG>
/
 <dt><span style="font-family:
 Arial;font-style: italic;">$1<\/span>/igx;
 $content =~ s/ <pre>/<pre style="font-family:
 courier,courier new,fixed;">/igx;
 $content =~ s/<\!-- -->//gi;

 # write the new contents
 open my $fh, '>', $file;
 print $fh $content;
 close $fh;
}

Using Perldoc to Read the Documentation

If you're on a Unix-like system, you're probably familiar, and possibly even
comfortable, with the manpages system, and the man(1) command. Perl
comes with a similar tool for accessing its documentation called perldoc.
Perldoc functions somewhat similar to manpages, although there are some
Perl specific options. Run the perldoc command on itself for more
information: perldoc perldoc. Windows© users can use perldoc as well,
though they may find the HTML documentation more accessible.

Before accessing the perldoc documentation for WebGUI, you must tell the
perldoc command where to find it. Users using the WRE have it easy:
sourcing the setenvironment.sh script does all the work. However, if you're
not using the WRE, it's not all that difficult: just set the Perl5LIB directory to
the top level directory of your WebGUI Perl modules. For example, if you've
installed WebGUI in /data/WebGUI, this will be /data/WebGUI/lib.

Installing Third-Party Modules via CPAN

The best part about being a Perl programmer is that you have CPAN©, the
largest repository of reusable software ready for you to pick and choose
what you need to accomplish your task. That said, how do you get all of
those modules ready for WebGUI to use?

31

WebGUI Developers Guide

The first step is to find the module that you want. The easiest way to do
this is to use one of the several web sites set up to search the enormous
collection of modules on CPAN (some 13,000 at this writing, undoubtedly
more by the time you read this). The two most common sites for browsing
what's available on CPAN are http://search.cpan.org and
http://kobesearch.cpan.org . Type in a module name, or even a general task
description, and take a look at what's available.

Once you find the module that you need, you'll need to install it so that
WebGUI knows where to find it. The most common, and simplest, way to
do this is using the CPAN command line utility that ships with Perl. WRE
users will need to use the CPAN utility that's part of the WRE; non-WRE
users will need to ensure that the CPAN command they use installs
modules in a place that will function properly.

32

WebGUI Developers Guide

Session
If WebGUI is a body then the Session object is WebGUI's nervous system:
it sends signals throughout WebGUI. The session object is passed into all
newly instantiated WebGUI objects, and many non-object-oriented
subroutines as well. It can then be used by the object to access the
database, interact with the user's request, find out which user is logged in,
and more. In this chapter explores how all of the components of
WebGUI::Session come together and how they can be used.

User vs Request Session

The most common mistake in dealing with the session object is that
developers think it is the user's session. In WebGUI, the session object is a
page request session, of which the user is a part. The session is all the
subsystems needed to service a page request. It is a connection to a
database, an interface to the HTTP protocol, a relationship to the currently
logged in user, and more. When dealing with the session object,
understand that the user is only a part of it. Really, it exists to service the
request.

Managing a Session

Managing a WebGUI session is relatively easy, and once you have a
session you can use all of its resources. To start with, you need to open a
WebGUI session:

my $webguiRoot = “/data/WebGUI”;
my $configFile = “www.example.com.conf”;
my $sessionId = “aaaaaaaaaaaaaaaaaaaaaa”;
my $session = WebGUI::Session->open($webguiRoot, $configFile, undef, undef,
$sessionId);

To create a session, you need to know where WebGUI is installed, and
that's the path in the variable called $webguiRoot. You also need a config
file name, which is in the $configFile variable in this example. Once
WebGUI has this, it will look in $webguiRoot/etc for a file called $configFile.
It will read in the contents of that file using WebGUI::Config. The config file
tells WebGUI how to act, and how to connect to external resources like a
database.

33

WebGUI Developers Guide

If you pass in a session id, then WebGUI will check the database to see if
that session id is already in use. If it is it will attach you to that existing
session. Otherwise it will automatically create a new session for you. If you
don't pass in a session id, then WebGUI will check with the $session->http
object to see if there is a session cookie from which it can read the session
id.

Once you have a session you can make use of all the objects contained in
a session, which are described in the following sections of this chapter. If
you need a bunch of those objects and don't want to reference them by
traversing the object tree (which can get quite verbose), then you can use
the “quick” method to retrieve them, like this:

my ($db, $config, $http) = $session->quick(qw(db config http));
If you need to know the sessionId for any reason you can get it by calling:
my $id = $session->getId;

Once you're done with your request, you need to clean up after yourself by
calling the following:

$session->close;

This will shut down the database connection, and clean up all the other
session attached objects.

$session->asset

This is a reference to the current asset, if any. The current asset is the one
that was requested by the user through the URL. Or, if a non-container
asset was just created, then the current asset will be the newly created
asset's container. See the WebGUI::Asset API for details.

my $id = $session->asset->getId;

$session->config

This is a reference to a WebGUI::Config object for this site. See the
WebGUI::Config API for details. Config files are stored in
/data/WebGUI/etc.

my @assets = @{ $session->config->get(“assets”) };

34

WebGUI Developers Guide

$session->datetime

This object provides methods for manipulating WebGUI's Data/Time format
epoch (the number of seconds since January 1, 1970). As WebGUI 7.x
development proceeds, this will become deprecated in favor of the
WebGUI::DateTime object, which uses real dates (“2007-12-31 14:32:11”)
instead of epochs. However, for at least the rest of 7.x development, this
object will remain as is. For details on the methods available in this object
see WebGUI::Session::DateTime.

my $epoch = $session->datetime->addToDate($epoch, $years, $months, $days);

$session->db

This is a reference to a WebGUI::SQL object. It is created by reading the
“dsn”, “dbuser”, and “dbpass” directives from the $session->config object.
Using this object, rather than recreating your connection to the WebGUI
database when you need to query the database, performs better.

my @usernames = $session->db->buildArray(“select username from users”);

$session->dbSlave

This is a reference to a WebGUI::SQL object. If “dbslave1”, “dbslave2”,
and/or “dbslave3” are specified in the WebGUI config file, then one of them
will be randomly instantiated upon call of this method. In this way the load
is distributed across all available slaves. However, you can still safely call
this method even if there is no slave, because it defaults to a reference to
$session->db.

my @usernames = $session->dbSlave->buildArray(“select username from users”);

$session->env

While you can always use Perl's %ENV to get at system environment
variables, this is a reference to WebGUI::Session::Env, which is just a
wrapper for %ENV. WebGUI uses this wrapper because it does some
special magic handling of some elements in %ENV depending upon the
environment it's in. That way it doesn't have to modify the actual %ENV,
which might cause problems. When working with WebGUI code you should
never use %ENV. Instead, always use this object.

my $remoteAddress = $session->env->get(“REMOTE_ADDR”);

35

WebGUI Developers Guide

$session->errorHandler

WebGUI currently combines logging and error handling into one object.
This may change in the future. For the time being, this is the object you
should use. It is a reference to WebGUI::Session::ErrorHandler. The logging
aspects of this are run by Log::Log4Perl, and there is a config file called
log.conf in /data/WebGUI/etc which sets up the logging rules. There are
other methods in this object for setting up debug, doing stack traces, and
finally, if you call a fatal() using it, stopping the page request dead in its
tracks. Fatal should only ever be called when it would be dangerous to
continue. Otherwise you should call error().

$session->errorHandler->error(“The user did something that they weren't supposed to.”);

$session->form

This is a reference to the WebGUI::Session::Form object, which in turn
plugs in to the WebGUI::Form::* modules for input validation. Using this
object you can pull form GET and POST variables with or without
validation. WebGUI supports multiple levels of validation. Here's how it
works. The following is grabbing the data raw with no validation:

my $value = $session->form->param(“emailAddy”);

This does the same thing, only with basic text field validation (which is
almost exactly the same as above):

my $value = $session->form->process(“emailAddy”);

This is grabbing the value using validation from the proper form control:

my $value = $session->form->process(“emailAddy”, “email”);

This is grabbing the value using validation and a default:

my $value = $session->form->process(“emailAddy”, “email”, “noreply@example.com");

And this is grabbing the value using full validation, and a fully formed
object:

my $value = $session->form->process(“emailAddy”, “email”, undef, \%formDefinition);

36

WebGUI Developers Guide

$session->http

The http object will only work if there was a valid request object passed
into the WebGUI::Session->open() call. See $session->request for details
on the request object. See the WebGUI::Session API for details on calling
open with the request object. The http object is a reference to
WebGUI::Session::Http and is the interface for getting and setting HTTP
options such as cache headers, mime types, and cookies.

$session->http->setCookie(“myCookie”, $value);

$session->icon

The icon object is used to generate toolbar icons in a standard way. It takes
into account internationalization, accessibility compliance, and other
things. See WebGUI::Session::Icon for API details.

$toolbar .= $session->icon->cut;

$session->id

WebGUI uses a GUID (Global Unique ID) system rather than integers for all
of its object and database table keys. It does this to make it easier to move
and synchronize data between WebGUI sites. A GUID is a 22 character
code consisting of a-z, A-Z, 0-9, and the “-” and “_” characters. It is
generated taking into account the site name, the time and date, and a
random number. Any time you need a new ID for something you'd use this
object (WebGUI::Session::Id) like this:

my $id = $session->id->generate;

$session->output

WebGUI's output handler processes macros on the output, and also allows
you to redirect output for things other than HTTP. For example, you may
want to output to a file handle if you're exporting content to static files. It is
a reference to a WebGUI::Session::Output object.

$session->output->print($html);

$session->os

If you ever need to detect what operating system WebGUI is running on
you can use the WebGUI::Session::Os object to do so. It's rarely needed as
WebGUI's internal subsystems automatically handle the operating system
differences for you.

37

WebGUI Developers Guide

my $osName = $session->get(“name”);

$session->privilege

The privilege object provides standard pages and HTTP codes for all
common privilege related messages you might need to show a user. For
example, if the user is not in the Admins group, but tries to access
something that is admin only, you might call the adminOnly privilege
message. See the WebGUI::Session::Privilege API for details.

my $html = $session->privilege->adminOnly;

$session->request

The request object is a reference to an Apache2::Request object. This is
created by the WebGUI Apache mod_Perl handler and passed into the
WebGUI::Session->open() method at the beginning of the request cycle.
Normally, you shouldn't ever need to access this object. It is mainly
available to low level subsystems that need to interact directly with the
request, like $session->http.

my $ifModifiedSince = $session->request->headers_in->{'If-Modified-Since'};

$session->scratch

The scratch variable subsystem allows you to attach arbitrary data to the
session. It will persist as long as the session exists. See
WebGUI::Session::Scratch for API details. The scratch system uses only
scalar data, but you can serialize complex data structures into JSON or
some other serialized format and store it in the scratch variable.

$session->scratch->set(“favorite color”, “black”);

$session->server

The server object is a reference to the Apache2::ServerUtil->server object.
It is automatically attached to the session by the WebGUI Apache
mod_Perl handler. Under normal circumstances it is only used by low level
subsystems and should never be needed by you.

my $configFileName = $session->server->dir_config(“WebguiConfig”);

$session->setting

The setting object is similar to the config object, except its properties are
stored in a settings table in the database rather than in a config file. The

38

WebGUI Developers Guide

disadvantage of this is that it's only able to store scalar config data, or
serialized structures (no hierarchy). The advantage of this is that it can be
quickly read on every request for settings that might change without a
server restart. The config file, on other other hand, is read only at server
startup and never again, so if you change something in the config it will
require a server restart. For more information see the
WebGUI::Session::Setting API.

my $value = $session->setting->get(“foo”);

$session->stow

The stow object, affectionately called “Stowage” by the WebGUI dev team,
is similar to the scratch object except that instead of attaching arbitrary
data to the session, it's attaching it to the request. Therefore, as soon as
$session->close is called, it goes out of existence. However, because it's
stored in memory, it can handle any object or complex reference type
without serialization. Despite it working like a global variable, it's a bad idea
to use it like that. Globals are always a bad idea. Instead, think of it as a
caching mechanism. See WebGUI::Session::Stow for details.

my $value = $session->stow->get(“foo”);

$session->style

The style object, which is a reference to WebGUI::Session::Style, is used to
manipulate the style wrapper for a page. It can be used to apply javascripts
and cascading style sheets to the appropriate places in the document, and
to load and execute the template used to generate the style.

$session->style->setScript(“/path/to/my.js”, { type=>”javascript” });

$session->url

The URL object provides a series of utilities for generating WebGUI
compliant URL's. It is a reference to WebGUI::Session::Url. It can help you
generate extra URL's, make URL's asset compliant, add GET parameters
to the end of a URL string, and generate fully qualified site URL's, among
other things.

my $newUrl = $session->url->append($url, “foo=bar”);

$session->user

The user object is a reference to a WebGUI::User object for the user that is

39

WebGUI Developers Guide

currently attached to this session. By default this would be the Visitor user,
but other users will be automatically attached if WebGUI detects that
they've logged in. You can manipulate this yourself by providing the
method with either a user id or a WebGUI::User object:

$session->user({ userId => $id });
$session->user({ user => $user });

You can use the object as a normal WebGUI::User object:

my $username = $session->user->username;

$session->var

The var object controls the persistence of the session data. It stores things
like the session id, the user id of the user attached to the session, the time
this session expires, the IP address last used to access this session, and
more. In most circumstances you won't ever have to use this object as it's
used by lower level subsystems. However, there are two instances where
you will use it.

The first is when you want to determine if admin mode is on or not. Or, for
that matter, if you want to toggle admin mode. To do that, the methods you
would use are these:

if ($session->var->isAdminOn) {
$session->var->switchAdminOff;

}
else {

$session->var->switchAdminOn;
}

The second is when you want to explicitly destroy a session. This is
different than $session->close, which just disconnects you from a session,
but the session itself is still there waiting to be reattached to. You'd want to
destroy a session when you're not going to use it again. For example, if you
write a command line script the $session->open statement will
automatically create a new session for you, but since you're not going to
use it again you'll want to explicitly destroy it to clean up after yourself.

40

WebGUI Developers Guide

To do this, you'd:

$session->var->end;

Note that even after you end the session, you must still do a $session-
>close to destroy the objects and close open connections. This is because
the var object is only about the persistence of the session, not the live-in
memory objects.

Dynamic Loading

The session object is a collection of smaller objects, which are covered in
detail in the previous sections. In order to improve performance these
objects are not instantiated until they are used. Therefore, the smaller
number of these objects you make use of during your request, the better
your performance will be. However, once the objects are instantiated, you
can safely reuse them over and over again, because they remain cached.

41

WebGUI Developers Guide

Writing Macros for WebGUI
Perl programmers are lazy people. They like to do only the smallest amount
of work they need in order to accomplish a task, and they have a penchant
for reusing others' work. The official literature for the Perl programming
language even goes so far as to extol laziness as a programmer virtue. The
Comprehensive Perl Archive Network©, or CPAN (http://www.cpan.org/)
exemplifies this laziness perhaps better than anything else.

WebGUI, being a GUI for web content management and development, also
encourages laziness. Among other features, WebGUI provides macros,
which are special plaintext commands that invoke custom Perl code to
perform specific functionality (most often insertion of text / markup).
Sounds a lot like an asset, doesn't it? That's because macros and assets
share some common characteristics:

● they both comprise specific functionality designed to be reused

● they're both configurable, albeit in different ways

● they're both implemented in Perl and, for the most part, output
HTML

● they both have skeleton files from which you can start writing your
own custom functionality.

But that's where the similarities end. While your users will be directly
viewing assets, they won't be directly viewing macros. That's because
macros are included in assets, and are expanded when the asset is
rendered.

When invoked, the macro does its thing and (most of the time) returns
some content at the point in the asset where it was invoked. This makes it
very easy to determine exactly how a macro will affect a page. There's no
delayed invocation or anything like that. Just call it and go. But how do you
call a macro? Unsurprisingly, it looks rather like a Perl subroutine call.
Following are some macro examples:

42

http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://www.cpan.org/

WebGUI Developers Guide

● ^AdminBar;

● ^FileUrl(/some/path/to/an/image.jpg);

● ^AddSomeNumbers(1, 2, 3);

There are three important parts here: the initial caret (the ^ character), the
name of the macro, and the terminating semi-colon.

These three elements comprise macro invocation; without them, nothing
will happen. Additionally, for macros that take parameters, the parentheses
enclosing the parameters are required. Commas separate parameters.
Parameters included, but not separated by commas, are taken to be literal
strings. For macros that don't take parameters, or for invocations of those
that do which don't require passing parameters, the parentheses can be
omitted.

How Macros Work

Macros are processed upon asset rendering, at the point in the asset's
content where they are found. This simplicity means that it's relatively
straightforward to get started developing macros: write some code that
produces some kind of markup, and return it. That's it. But of course, there
can be more to it than that.

When invoked, the macro's process subroutine (subroutine! It is not a
method!) is invoked. This subroutine is passed to the WebGUI::Session
object, along with any parameters specified for the macro. As pointed out
before, invoking a macro works very much like calling a subroutine in Perl.
Parameters are all passed as very simple text strings, and thus must be
parsed by the process subroutine if they use key=value syntax or
something else not directly usable by the process subroutine. Because of
how Perl treats string and number data, there doesn't need to be any
magical conversion of strings containing numeric values into Perl numbers.
The process subroutine's job is to generate some markup and return it to
the code invoking the macro. Of course, the macro doesn't always need to
return markup, or anything at all. It just won't present any visible content to
the user.

The real power in macros comes from the fact that their logic is coded in
Perl, as opposed to Javascript. Macros also have access to the WebGUI
API, giving them access to fun things like database access and the ability
to manipulate anything in WebGUI. Macros also have access to the full

43

WebGUI Developers Guide

power of Perl – all of CPAN is at your fingertips. Caution must be taken,
however, as overly expensive operations will delay page loads.

The Macro Skeleton

Like most aspects of WebGUI, there's a skeleton file available for macros
from which you can start developing your own custom functionality. Within
a WebGUI installation, this file is located at
WebGUI/lib/WebGUI/Macro/_macro.skeleton. The process subroutine is
called automatically by WebGUI, and must be present for the macro to
function.

The job of a macro is to process any given parameters and use them to
produce some kind of meaningful output, or to do something useful. This
macro skeleton does neither of those, but it does contain everything
needed for a fully functioning macro.

Hello World

Let's start with a fully functional, albeit not altogether useful, macro. This
macro will output the text “Hello, world!” to page where the macro is called.
It's extremely simple and straightforward, but illustrates the main principles
involved in developing a macro. There's more to developing a macro than
just writing the code, but not much. For this specific example, the “other
stuff” is more complicated than the macro itself, but that will only be true
for these simplest of cases. This section will cover those details in addition
to providing the (short!) code required for the macro itself.

First, the more difficult task: telling WebGUI about your brand new macro.
WebGUI looks up information about each macro in its configuration file.
Take a look at part of the relevant section from the default configuration file
that ships with version 7.5:

44

WebGUI Developers Guide

"macros" : {
"#" : "Hash_userId",

 "/" : "Slash_gatewayUrl",
 "@" : "At_username",
 "AOIHits" : "AOIHits",
 "AOIRank" : "AOIRank",
 "AdminBar" : "AdminBar",
 "AdminText" : "AdminText",
 "AdminToggle" : "AdminToggle",

"AdSpace" : "AdSpace",
 "AssetProxy" : "AssetProxy",
 "CanEditText" : "CanEditText",
 "D" : "D_date",

[...]
 "u" : "u_companyUrl"

},

What you see here is a JSON dictionary. WebGUI uses JSON throughout,
and if you're going to be hacking on WebGUI, you'll need to be comfortable
with it. Basically, to develop a macro, you only need to know a few things.
Macros are specified in this dictionary in key-value pairs. The pairs are
separated by colons and enumerated with commas. There must not be a
comma after the last item in this enumeration of key-value pairs, quite
contradictory to Perl, which doesn't care either way. The keys are the
strings that will appear in your assets when you invoke the macro. For
example, you'd use ^/ or ^@ instead of ^Slash_gatewayUrl. The values,
then, are the class names (with respect to the WebGUI::Macro part) of the
macros themselves. Thus, if you have a macro whose class was
WebGUI::Macro::HelloWorld, and you wanted to invoke it as ^Hello; in your
assets, the line would look like this:

“Hello” : “HelloWorld”,

Remember to leave off the comma if it's the last key-value pair in the
dictionary.

Now for the code. First, copy the macro skeleton
to a new file, such as HelloWorld.pm. Change the
package and file names to whatever you specified
in the configuration file, and replace the existing
process method with this code:

45

It's very important to
change the package
name after you've
copied the skeleton
file. While easy to
forget, it will cause
your macro to not
function.

WebGUI Developers Guide

sub process {
 my $session = shift;
 return 'Hello, world!';
}

The macro receives the session object as a parameter, and returns the
message. That's it. The return value from the process sub is what WebGUI
displays on the item (asset, snippet, anything capable of containing a
macro) where the macro is in the content for that item.

Getting Argumentative: Accepting Parameters

Not all macros can be invoked without any kind of parameter. Some need a
bit of extra information to do their jobs correctly. This is possible, and again
relatively straightforward. Take a look at an illustrative example. For the
purpose of this example, say you want to pass a custom greeting to the
user and have it insert the full user name. This could easily be obtained
with an appropriate call of the User macro, but will serve this purpose well.

That said, take a look at the code.

sub process {
 my $session = shift; # get the session
 my $greeting = shift; # get the greeting for the user
 my $userId = $session->user; # get the user ID
 my $userName = $user->userName; # and the user

 # jostle them a bit and inspire them to log in
 if($userName eq 'Visitor') {
 $userName = 'anonymous coward';
 }

 my $markup = <<HTML;
<p>Why, hello there, ${userName}! $greeting
HTML

 return $markup;
}

Take a look at this step by step. First is the WebGUI::Session object. Next,
is the greeting string. That's a string of text, so no commas should be

46

WebGUI Developers Guide

present in the invocation of the macro, otherwise you'll get part of it in
$greeting and the other half will stay in limbo, never to see the light of day.
Next, pull the user ID associated with the session, and then get the user's
name as stored in his/her profile. Having users log in is a good thing, most
of the time, so anonymous users are jostled a bit, and then construct the
greeting and return it.

Now for Something Completely Different

The more serious usages of macros have been covered, but you can have
a bit of fun with them, too. A perennial favorite is something that will output
fortunes to users. Different databases exist for the venerable fortune
program, each containing much wisdom. Take a look at the process
subroutine for this macro. This subroutine will entail processing key=value
argument syntax, rather than the positional syntax used in previous
macros. Take a look at the code.

sub process {
 # get the session

my $session = shift;

 # and the arguments to the fortune command
 my @arguments = @_;
 my %fortuneArguments;

 # process the arguments passed to the macro
 for my $keyValuePair (@arguments) {
 my ($key, $value) = split /=/, $keyValuePair;
 $fortuneArguments{$key} = $value;
 }

 # set up base fortune command (change this if your path is different)
 my $baseCommand = '/opt/local/bin/fortune';
 my @commandArguments;

 if(defined $fortuneArguments{'offensive'}) {
 push @commandArguments, '-o',
 }
 if(defined $fortuneArguments{'database'}) {
 push @commandArguments, $fortuneArguments{'database'};
 }

 # finally, run the command

47

WebGUI Developers Guide

 my @responseToUser = qx|$baseCommand @commandArguments|;

 # check if something went wrong
 if(($? >> 8) != 0) {
 return "<p>Sorry, an error occurred retrieving your fortune. Watch out for black cats,
ladders, and mirrors!</p>"
 }
 else {
 my $output = "<pre>@responseToUser</pre>";
 return $output;
 }
}

As always, you start with getting the session object. Next, get the list of
parameters. They're to be passed as key=value pairs, separated by spaces,
so the macro processing code sees them as “words”. This entails
processing the “words”, splitting them up on the '=', and adding them to a
hash to keep track of them and their values. Next, configure the base
command. The example given here is for a Mac OS X Leopard© installation

using Macports©. Most traditional Unix© systems will use

/usr/games/fortune or /usr/bin/fortune. Windows© users will probably have
to fetch a pre-compiled fortune program to use this example. Following
this, the given arguments are checked and command line options to the
fortune command are constructed accordingly. Finally, run the command,
check for errors, and give either an error message or the fortune to the
user. That's it!

48

WebGUI Developers Guide

Utility Scripts
A utility script is anything outside of the main web interface that uses
WebGUI's API. With most other extensible places controlled by WebGUI
from the outside, utility scripts control the flow of execution for themselves.

Why Create Utility Scripts?

Utility scripts are primarily useful for maintenance. WebGUI is designed so
basically everything can be controlled or changed through the web
interface, but there are some tasks that lend themselves to the command
line. Sometimes you want to interact with the local filesystem, which isn't
safe to expose to the web. You may also want to perform an action across
multiple sites hosted on the same server. Other actions are somewhat
dangerous and should only be done by someone who knows the risks and
can perform backups and be ready to repair damage. Writing your own
script is often useful because creating a command line interface is simpler
than making a web interface. The same tasks can probably be performed
through SQL and shell commands, but by using WebGUI's API your scripts
are protected against changes to the underlying structure of the database
or file organization. And even when using SQL statements directly, the
WebGUI API allows you to connect simply and use various quick methods
to simplify your code.

Existing Utility Scripts

Here are some examples of utility scripts and
their uses.

fileImport.pl

If you have a number of files to add to a server, it can be a slow and
inconvenient process to upload them, especially if they are large. If you
already have the files on the server, there is an easier way. The fileImport
script can load all of the files from a directory (recursively if desired) on the
server into the appropriate uploads location. This is much faster and
bypasses any limits you might have on uploading. Like most utility scripts,
the first parameter needed is the site's WebGUI config file. This lets the
script find the database, file locations, and other information about the site.
Additionally, it needs the location of the files to import, and the asset to

49

See the WebGUI/sbin
folder for additional
utility scripts.

WebGUI Developers Guide

place them under.

$ sudo Perl fileImport.pl –configFile=dev.localhost.localdomain.conf \
--pathToFiles=/data/import --parentAssetId=PBasset000000000000002
Starting...OK
End of the childs detection
Building file list.Found file newimage.png.
Found file newpage.html.
File list complete.
Adding files...
 Adding /data/import/newimage.png to the database.
 Create the new asset.
 Setting filesystem privilege. Privileges set.
 Adding /data/import/newpage.html to the database.
 Create the new asset.
 Setting filesystem privilege. Privileges set.
Finished adding.
Committing version tag...Done.
Cleaning up...OK

rebuildLineage.pl

While rare, it is possible for the lineage information on assets to get
corrupted. Lineage is what allows assets to quickly find their parent or
descendant assets, without crawling through every parent to child to child
relationship. If something went wrong with this script, it would cause large
problems with the site, so it is good to have a backup before doing so.

$ Perl rebuildLineage.pl –configFile=dev.localhost.localdomain.conf
Starting...OK
Looking for descendant replationships...
Got the relationships.

Looking for orphans...
No orphans found.

Disabling constraints on lineage...
Rebuilding lineage...
Asset ID Old Lineage New Lineage
PBasset000000000000001 000001 000001
PBasset000000000000002 000001000001 000001000001
...

50

WebGUI Developers Guide

IWFxZDyGhQ3-SLZhELa3qw 000001000002000010 000001000002000008
PBasset000000000000003 000001000003 000001000003
tempspace0000000000000 000001000004 000001000004

Re-enabling constraints on lineage...

Repairing search index...
Cleaning up...OK

Don't forget to clear your cache.

search.pl

This script has two functions. The first is to rebuild the search index. It can
also be used to search the index for matching assets. When indexing, it
can be told to act on all sites on the server instead of only one. It may be
useful to reindex a search if your database search limits are changed. Also,
it is possible to, either programmatically or through SQL, modify assets,
and this will allow you to create the index so they have to be found through
search.

$ Perl search.pl --configFile=dev.localhost.localdomain.conf --search Features
4Yfz9hqBqM8OYMGuQK8oLw Get Features
OhdaFLE7sXOzo_SIP2ZUgA Welcome

Search took 0.002149 seconds.

Useful API Functions

Included here are examples of useful API functions.

WebGUI::Session

This is the core of any utility script. The WebGUI session contains
information about configuration files, the database connection, the current
user, and more. The first step in any utility script is usually to initialize a
WebGUI session.

open method

This initializes a WebGUI session. The needed parameters are the WebGUI
root directory, and the name of the config file for the site. There are other
optional parameters which are used only when run as a web service.

51

WebGUI Developers Guide

config method

This gets an instance of the configuration object, and allows you to get or
set any option in the configuration file. You may want to add or remove
macros from the list. Other options, like the location of the uploads, are
also available here.

settings method

This provides access to all of WebGUI's settings, which are normally set in
the Settings screen of the Admin Console.

db method

While it is usually safer and easier to use the other API's to interact with
WebGUI's database, sometimes you need the power of raw SQL. The
$session->db method gives you a WebGUI::SQL object, with easy to use
methods like quickArray or quickHash to make database interactions fast
and simple.

Most other object creation methods require a session object as their first
parameter.

WebGUI::Asset

Here are some method examples for WebGUI::Asset.

new method

If you already know the ID of an asset, you can use the WebGUI::Asset-
>new method to retrieve an object instance of it, and then use its display or
modification methods to perform whatever actions you need. These ID's
may have come from an SQL statement, or a getLineage call.

newByUrl method

Similar to new, but given a URL instead of an asset ID.

getRoot method

Sometimes, you don't have any particular starting point, but want to
operate on the entire site. All other assets are descendants of the Root
asset, so it is a good starting point.

52

WebGUI Developers Guide

getLineage

getLineage is one of the most powerful functions in WebGUI's API. You can
use it to find related assets by defining a set of rules for which to select.

WebGUI::User

Here are some method examples for WebGUI::User.

new, newByUsername, newByEmail methods

These methods get a user object given either a user ID, login name, or
email address.

profileField method

This method gets or sets the value of a specific profile field for a user. With
a single parameter, the value of that profile field is returned. If a second
parameter is given, the profile field is set to that value.

A Simple Utility Script : settings.pl

WebGUI has a good number of global settings, dealing with things like the
commit process and user authentication. Usually, these are adjusted
through the Setting screen in the Admin Console. It can be useful to control
them through the command line or as part of an automated process. While
you can connect to the database and use SQL to set these, looking up the
needed information and typing out the commands can be time consuming.
You're better off creating a small script to do the work for you. While you
could start from scratch every time you want to create a script, a utility
script skeleton is included with the WebGUI distribution. The first step
when creating a utility script is to create a copy of this skeleton, then open
it in an editor.

$ cd /data/WebGUI/sbin
$ cp _utility.skeleton setting.pl
$ vim setting.pl

use lib "../lib";
use strict;
use Getopt::Long;
use WebGUI::Session;

53

WebGUI Developers Guide

my $session = start();
Do your work here
finish($session);

#---
Your sub here

#---
sub start {
 my $configFile;
 $| = 1; #disable output buffering
 GetOptions(
 'configFile=s' => \$configFile,
);
...

There are some subs predefined in the script, but to start with, look at the
line near the top saying # Do your work here. At this point the default script
has already initialized a WebGUI session, which is what is required to make
changes. This example starts simple with the script: make it report the
current value of a setting. Below the call to start(), add:

my $name = shift @ARGV;
my $value = $session->setting->get($name);
print $value, “\n”;

Now you can save the script and run it on the command line, giving it the
additional parameter of companyName.

$ Perl setting.pl –configFile=dev.localhost.localdomain.conf companyName
My Company

In addition to the script name and the setting to retrieve, you need to
provide the site's configuration file. Since there can be multiple sites on one
server, this is a necessary command for most scripts. The configFile
parameter is handled in the start sub, which you can adjust soon. Of the
code added, the part that is doing the important work is $session->setting-
>get($name), which uses the setting object to retrieve the setting.

Just retrieving one setting from the database isn't very useful, though. You
can adjust the script to work with multiple settings and set them as well as
retrieve. Use a loop for parameters, and allow use = to indicate a new value

54

WebGUI Developers Guide

to store in the database.

Loop through parameters
for my $setting (@ARGV) {
 # Check for an '=' in the parameter
 if ($setting =~ /^(\w+)=(.*)/) {
 # If there was, our regular expression matched the name and requested value
 my ($name, $value) = ($1, $2);
 # Report the old value to help the user detect any mistakes
 print $name . " - old: " . $session->setting->get($name);
 # Set the new value
 $session->setting->set($name, $value);
 # Report the new value as well for easy comparison
 print " new: " . $session->setting->get($name) . "\n";
 }
 else {
 # If there was no '=', we just have a name.
 # Report the value of that setting
 print $setting . " - " . $session->setting->get($setting) . "\n";
 }
}

In this case, there are multiple calls on the setting object, both to set and
get values. Now run:

$ Perl setting.pl –configFile=dev.localhost.localdomain.conf companyName
companyEmail=webmaster@example.com
companyName - My Company
companyEmail - old: info@mycompany.com new: webmaster@example.com

Now one setting has been retrieved, and another set in one line.

These setting names aren't always obvious though. You may only know, or
be able to guess, part of the name. Unfortunately, the settings API doesn't
provide a way to list WebGUI's settings. For this task, you'll have to go
directly to the database. The first change you'll need to make is to allow
you to request a list of settings. You'll want to add a variable to store this
flag:

use Getopt::Long;
use WebGUI::Session;

55

mailto:companyEmail%3Dwebmaster@example.com
mailto:companyEmail%3Dwebmaster@example.com
mailto:companyEmail%3Dwebmaster@example.com

WebGUI Developers Guide

my $optList;
my $session = start();

Next, add the parameter to the command line parser. The start sub uses
the standard Perl module Getopt::Long to parse the –configFile parameter.
You don't need to get a value like that option; you only need a simple flag.
So add an entry to use the --list parameter, and save the flag in your
variable:

 GetOptions(
 'configFile=s' => \$configFile,
 'list' => \$optList,
);

Now you just need to operate on this flag. The database table 'settings' is
what contains your settings, so select all the names that match your
parameters. You can adjust your existing setting loop:

for my $setting (@ARGV) {
 # If we are in list mode
 if ($optList) {
 # buildArray selects all the results into an array
 my @settings = $session->db->buildArray('SELECT name FROM settings WHERE
name LIKE ?', ['%' . $setting . '%']);
 # Loop through our list of settings
 for my $name (@settings) {
 # and output their names
 print $name, "\n";
 }
 }
 # Otherwise, operate like before.
 elsif ($setting =~ /^(\w+)=(.*)/) {

Now, if you don't specify the list option, it operates exactly like before, but
with the list option you can see all the settings related to email:

$ Perl setting.pl –configFile=dev.localhost.localdomain.conf --list email
companyEmail
userInvitationsEmailExists
userInvitationsEmailTemplateId

56

WebGUI Developers Guide

webguiRecoverPasswordEmail
webguiValidateEmail

Package Maintenance: Short but Powerful

WebGUI packages are a convenient way to share content you've created
on your site with other WebGUI sites. You may also run a number of sites
that share certain assets. You may want to use packages to synchronize
these assets, but the process of exporting and importing can be time
consuming when done manually. One option is to create a script so you
can automate the process. Then it can be a single command to update
your sites, or could even be done as a scheduled task. Start again with the
utility skeleton.

$ cd /data/WebGUI/sbin
$ cp _utility.skeleton package.pl
$ vim package.pl

There are several WebGUI modules you'll need to do your work, as well as
some regular Perl file modules. There are also three specific pieces of
information you'll need from the user:

1. the directory to export to

2. the package to import

3. the location to import to

use lib "../lib";
use strict;
use Getopt::Long;
use WebGUI::Session;
use WebGUI::Asset;
use WebGUI::Storage;
use File::Copy qw(copy);
use File::Spec;

my $outputDir = '.';
my $importPackage;
my $importRoot;
my $session = start();

57

WebGUI Developers Guide

Next, you need to set the script up to parse these parameters. In the start
sub, you'll need to add the three parameters. Additionally, the process of
importing packages will create a version tag. Unless you specifically handle
this version tag, it will be left uncommitted. There is sample code provided
in the start and finish subs to create and commit a version tag, so
uncomment it and choose an appropriate name.

sub start {
 my $configFile;
 $| = 1; #disable output buffering
 GetOptions(
 'configFile=s' => \$configFile,
 'outputDir=s' => \$outputDir,
 'import=s' => \$importPackage,
 'root=s' => \$importRoot,
);
 my $session = WebGUI::Session->open("..",$configFile);
 $session->user({userId=>3});

 my $versionTag = WebGUI::VersionTag->getWorking($session);
 $versionTag->set({name => 'Package Import'});

 return $session;
}

#---
sub finish {
 my $session = shift;

 my $versionTag = WebGUI::VersionTag->getWorking($session);
 $versionTag->commit;

 $session->var->end;
 $session->close;
}

You now have the appropriate information gathered and can start doing the
actual work. After the call to start(), you'll want to choose between two
different modes, importing and exporting. If you're importing, you need to
create a storage location for your package, add the package file to it, and
call the package importing method on your root asset. To export, you'll
need to get your asset object from a URL, export it as a package, and copy

58

WebGUI Developers Guide

the package file to the requested location.

First, check if we are importing or exporting
if ($importPackage) {
 # Importing requires a storage location, create a temporary one
 my $storage = WebGUI::Storage->createTemp($session);
 # Add out package file to that storage location
 $storage->addFileFromFilesystem($importPackage);
 # Now we need a base asset to import into. The user can specify the URL
 # to use as a parent, or we'll default to the import node.
 my $asset = $importRoot ? WebGUI::Asset->newByUrl($session, $importRoot) :
WebGUI::Asset->getImportNode($session);
 # The import process itself is easy, just a single call returning the new asset
 my $newAsset = $asset->importPackage($storage);
 # Report out success
 print "imported $importPackage to " . $newAsset->get('url') . "\n";
}
Otherwise, we are exporting
else {
 # Calculate full path to output files to first
 my $fullOutputDir = File::Spec->rel2abs($outputDir);
 # Multiple URLs can be specified to export, loop through them
 for my $url (@ARGV) {
 # Find the corresponding asset
 my $asset = WebGUI::Asset->newByUrl($session, $url);
 # If there isn't a matching URL on the site, warn
 # the user and try the next one
 if (!$asset) {
 warn "No asset with URL: $url\n";
 next;
 }
 # Exporting creates a storage location with the package file
 my $storage = $asset->exportPackage;
 # There will only be one file, the package. Get its filename
 my $file = $storage->getFiles->[0];
 # Calculate the full path we'll be outputing this file to
 my $outputFile = "$fullOutputDir/$file";
 # Copy our package from its storage location to the user specified location
 copy($storage->getPath($file), $outputFile);
 # Report our success
 print "created package $outputDir/$file for $url\n";
 }

59

WebGUI Developers Guide

}

Now exporting is as simple as running the script and giving it a list of
URL's.

$ Perl package.pl --configFile=dev.localhost.localdomain.conf home
created package ./home.wgpkg for home

You can then import this package just as easily.

$ Perl package.pl --configFile=localhost.conf --import=home.wgpkg
imported home.wgpkg to home

Apache Authentication: When a Script isn't a Script

While writing scripts to run on the command line is a useful way to interact
with the WebGUI API, the same techniques can be applied anywhere Perl is
used. One powerful place to use Perl, as WebGUI is evidence of, is inside
Apache using mod_Perl. With mod_Perl, you have full access to Apache's
request cycle and can implement handlers for URL parsing, authentication
and access control, content handling, and even logging. WebGUI is
implemented as a series of Apache handlers, but takes control of the entire
request process.

You may have files available that you want to be handled by Apache's
normal request mechanisms, but controlling access to these files would
normally mean creating files with user and password information for
everyone you want to be able to access them. If you already have users
and groups in WebGUI for these people, this is a duplication of effort. With
mod_Perl, though, you authenticate against WebGUI's database, leaving
the rest of the request to be handled as normal.

This script is a large departure from your previous command line based
scripts, so starting with the skeleton wouldn't provide you with anything. In
this case, start with a blank file.

$ vim apacheAuth.pl

First, you have to import all the required modules from WebGUI and
Apache. You''ll also want to prevent the script from being accidentally run
on the command line.

60

WebGUI Developers Guide

BEGIN { # Prevent command line execution
 if (!$ENV{MOD_Perl}) { # This variable is always defined by mod_Perl
 die "This script must be run by Apache 2\n";
 }
}

package Apache2::AuthWebGUI;
use strict;
use warnings;
use WebGUI::Session; # Load the parts of WebGUI that are needed
use WebGUI::Utility;

use Apache2::Access (); # Load the Apache modules that are used
use Apache2::RequestUtil ();
use Apache2::Const -compile => qw(OK DECLINED HTTP_UNAUTHORIZED
SERVER_ERROR);

Apache has separate phases for authentication and authorization, so your
first sub is just to identify the user. Start with the basics of a mod_Perl
handler and get the request object and the server object. Next, initialize a
WebGUI session. WebGUI sessions know how to handle those objects, so
you'll provide them to simplify parts of your code.

Authentication sub
Add to httpd.conf as PerlAuthenHandler Apache2::AuthWebGUI::authen
All we are doing is identifying the user
sub authen {
 my $r = shift; # Apache Request handle
 my $s = Apache2::ServerUtil->server; # Server handle

 # Create a WebGUI session, use the same configuration settings as WebGUI
 my $session = WebGUI::Session->open($s->dir_config('WebguiRoot'), $r-
>dir_config('WebguiConfig'), $r, $s);

This code handles two types of authentication: basic auth and cookie
based. Basic auth is part of the HTTP standard, with the user information
being provided in the HTTP headers. The interface for entering this
information is determined by the client, though, and cannot be integrated
into a website's pages. This makes it less suited for a media rich website,
but ideal when working with a command line client, such as wget. Cookie
based auth is what WebGUI normally uses. By reusing that cookie, users

61

WebGUI Developers Guide

are allowed to log into WebGUI, then be automatically authenticated to a
file store protected by this handler. When using cookie based auth, the
session object does all the work for you. It will determine what user is
logged in, and you can save that information with Apache.

 # Two auth modes, by default we allow both to be used
 my $mode = $r->dir_config('WebguiAuthMode') || 'both';

 # First is cookie mode, uses the session cookie from webgui.
 if ($mode eq 'cookie' || $mode eq 'both') {
 # The session will pick out the cookie and find the user it is logged in as
 my $userId = $session->user->userId;
 # If it isn't visitor, they are authenticated
 if ($userId ne '1') {
 # This is a shortcut for the authz handler so we don't have to
 # create a new session or keep track of one across multiple handlers
 checkGroupAccess($session);
 # set the username for the request object
 $r->user($session->user->username);
 $session->close;
 return Apache2::Const::OK;
 }
 }

For basic auth, you first have to request the authentication information from
the client. After doing that, use WebGUI's authentication system to verify
the username and password.

 # Next try basic auth, part of the HTTP standard
 if ($mode eq 'basic' || $mode eq 'both') {
 # Check if the browser sent auth info
 my ($status, $password) = $r->get_basic_auth_pw;
 # It didn't or something else went wrong.
 # Tell the browser we need login information.
 if ($status != Apache2::Const::OK) {
 $session->var->end;
 $session->close;
 return $status;
 }

 # The request has a user, find the auth settings for that user
 my $user = $r->user;

62

WebGUI Developers Guide

 my $auth = getAuth($session, $user);
 if (!$auth) {
 $session->var->end;
 $session->close;
 return Apache2::Const::SERVER_ERROR;
 }

 # Check the the password, if it checks out, they are logged in
 if ($auth->authenticate($user, $password)) {
 # Our shortcut again for the authz handler
 checkGroupAccess($session, $user);
 $session->var->end;
 $session->close;
 return Apache2::Const::OK;
 }

 # Otherwise, note it for logs
 $r->note_basic_auth_failure;
 }
 # We didn't success, so clean up and return the failure
 $session->var->end;
 $session->close;

 return Apache2::Const::HTTP_UNAUTHORIZED;
}

In order to check the identity of a user given its username and password,
you need to get a WebGUI authorization object to check it with. The sub
getAuth retrieves this for a given user.

sub getAuth {
 my $session = shift;
 my $user = shift;
 # need to find out the authentication method, and only use it if valid
 (my $method) = $session->db->quickArray("select authMethod from users where
username=?", [$user]);
 # Valid methods are listed in our config file
 if (!isIn($method, @{$session->config->get("authMethods")})) {
 $method = $session->setting->get("authMethod");
 }
 # make sure the module is loaded
 my $module = "WebGUI::Auth::$method";

63

WebGUI Developers Guide

 (my $modFile = "$module.pm") =~ s{::}{/}g;
 if (!eval { require $modFile; 1 }) {
 $session->errorHandler->error("Authentication module failed to compile: $module:
$@");
 return;
 }
 # create a new instance of the auth module, or log a failure
 my $auth = eval { $module->new($session, $method) };
 if (!$auth) {
 $session->errorHandler->error("Couldn't instantiate authentication module: $method.
Root cause: $@");
 return;
 }
 return $auth;
}

After running this handler, Apache will have verified the identity of the user,
and will be able to use that username for any of its normal authorization
controls.

Then, configure this authorization handler in your Apache config.

Uses the same configuration as normal WebGUI
PerlSetVar WebguiConfig dev.localhost.localdomain.conf
Load the file with the code in it
PerlPostConfigRequire /data/WebGUI/sbin/apacheAuth.pl
Register it to handle authentication
PerlAuthenHandler Apache2::AuthWebGUI::authen

<Location />
 PerlSetVar WebguiAuthMode both # Allow session cookie or basic auth
 AuthType Basic # Setup for basic auth
 AuthName "WebGUI Data Area"
 Require valid-user # Require a valid login to get access
</Location>

This requires that the user can log in in some form, but doesn't check any
group memberships. What if you have different users with different access
levels, and want to restrict different files to different groups? For that, you
need an authorization handler. Authorization takes place after the user is
identified, to check if that user should have access to a given resource. For
this handler, you need to take the username and check if the user is a

64

WebGUI Developers Guide

member of the groups you are allowing access. When configuring the
directory access, you'll specify a whitespace separated list of group ID's
that have access.

Check authorization settings to see if user has access
sub checkGroupAccess {
 my $session = shift;
 my $username = shift;
 my $r = $session->request;
 # Session's user if no user specified
 my $user = $username ? WebGUI::User->newByUsername($session, $username) :
$session->user;
 # Read config, split required groups into a list
 my $groupsToAccess = $session->request->dir_config('WebguiAuthRequireGroup');
 return
 unless $groupsToAccess;
 if (!ref $groupsToAccess) {
 $groupsToAccess = [split /\s+/, $groupsToAccess];
 }
 # if the user is in any of the groups, make as success
 for my $groupId (@$groupsToAccess) {
 if ($user->isInGroup($groupId)) {
 $r->pnotes(WebGUIAuthGroupAccess => 1);
 return;
 }
 }
 return;
}

This example cheats a bit. This sub is called in the authentication handler,
not the authorization handler. This simplifies the session handling. The
caveat is that you won't be able to authorize using WebGUI groups without
first authenticating using WebGUI, but the odds of wanting that are very
low. When this is processed, it saves a simple true or false in the Apache
request object. The actual authorization handler, then, only has to check
this value.

would be expensive to reinitialize session, so we use the data we saved earlier
sub authz {
 my $r = shift; # Apache Request handle
 if ($r->pnotes('WebGUIAuthGroupAccess')) { # Our saved value
 return Apache2::Const::OK;

65

WebGUI Developers Guide

 }
 return Apache2::Const::HTTP_UNAUTHORIZED;
}

Configuring this only requires a small change to the Apache config.

Uses the same configuration as normal WebGUI
PerlSetVar WebguiConfig dev.localhost.localdomain.conf
Load the file with the code in it
PerlPostConfigRequire /data/WebGUI/sbin/apacheAuth.pl
Register it to handle authentication
PerlAuthenHandler Apache2::AuthWebGUI::authen
Register it to handle authorization
PerlAuthzHandler Apache2::AuthWebGUI::authz

<Location />
 PerlSetVar WebguiAuthMode both # Allow session cookie or basic auth
 PerlSetVar WebguiAuthRequireGroup 11 # Only allow access to secondary admins
 AuthType Basic # Setup for basic auth
 AuthName "WebGUI Data Area"
 Require valid-user # Require a valid login to get access
</Location>

You can add additional location sections with their own
WebguiAuthRequireGroup directives to have separate restrictions for
different paths.

While the main point of WebGUI is to display assets, you can see many
places where interacting with the API outside of a web interface is useful.
You may want to perform maintenance on your sites, or you might want to
use local files on your server. Or, you can use one of WebGUI's subsystems
to perform tasks as part of a different program. Any time you need to direct
the entire flow of execution, and not have it controlled for you, utility scripts
will answer this need.

66

WebGUI Developers Guide

URL Handlers
WebGUI URL handlers serve the same purpose as a mod_perl handler in
Apache. They allow you to attach some arbitrary functionality at a specific
URL. For example, you can set up some code to apply WebGUI privileges
to a filesystem folder full of files, or you can write a handler that will process
SOAP requests using WebGUI's data, without going through WebGUI's
normal request cycle.

You might think to yourself that since WebGUI is written in mod_perl, is
itself a mod_perl handler, and URL handlers are the same as mod_perl
handlers, why have them at all? Technically, there's no reason you couldn't
write a mod_perl handler in place of a WebGUI URL handler, but as with
every part of the WebGUI API, URL handlers set up a mechanism that is a
bit more uniform and easy to use for WebGUI tasks. URL handlers give you
access to the Apache request cycle, server config, and the WebGUI config,
but it hides some of the rudimentary setup that you'd normally have to do
so that you can get down to the business of writing your specific
functionality. URL handlers also allow you to use Perl-based regular
expressions to match URL's rather than the somewhat more obtuse POSIX
regular expressions that Apache uses. If you'd prefer to write a mod_perl
handler, there's no reason you can't; URL handlers simply give you one
additional way to achieve your goals.

The Request Cycle

The following diagram depicts where URL handlers fit into the WebGUI
request cycle.

67

WebGUI Developers Guide

As you can see, the URL handlers are the very first step in the the request
cycle.

When to Use

There are three main reasons that you'd choose to write a URL handler. You
may want to write an application outside of the Asset API. Maybe you don't
want to deal with versioning, or you don't wish to conform to the Asset API.
Perhaps you want to avoid the asset API because you want to avoid the
memory or processing overhead of assets. Or, you may wish to avoid
assets because your application is a singleton and there's no reason to
ever deploy it to more than one URL.

Another reason to write a URL handler is to integrate an existing application

68

If your URL handler wants to allow authentication, or other
features normally handled by an operation, then you'll need
to explicitly include that in your handler, because
operations are a content handler, which won't yet be called
before your URL handler takes over.

WebGUI Developers Guide

with WebGUI. With a URL handler, you can write the code glue that will
bind WebGUI privileges, templates, workflow, or other mechanisms with
existing code or applications. This works not only with Perl applications,
but also any application with a command line, C, or SOAP API, that you
can write a Perl wrapper around.

You may also want to write a URL handler to provide privileges or other
processing of external resources, such as a directory of files. Say you have
a folder full of PDF's containing financial reports. You only want the people
in your accounting department to be able to access those files, and it just
so happens that you have a WebGUI group called “Accounting” which
includes all the members of your accounting department. Using a URL
handler you can place a filter on the folder so that only the accounting
department can view those files. If this sounds interesting, stay tuned,
because this example will be built later in this chapter.

Configuration

URL handlers are configured by adding a line to your WebGUI config file.
The default configuration looks like this:

"urlHandlers" : [
 { "^/extras" : "WebGUI::URL::PassThru" },
 { "^/uploads/dictionaries" : "WebGUI::URL::Unauthorized" },
 { "^/uploads" : "WebGUI::URL::Uploads" },
 { "^/*give-credit-where-credit-is-due*$" : "WebGUI::URL::Credits" },
 { "^/abcdefghijklmnopqrstuvwxyz$" : "WebGUI::URL::Snoop" },
 { ".*" : "WebGUI::URL::Content" }
],

To add a new URL handler that you've written, simply add a line to the
existing configuration. Each line consists of a regular expression pattern to
match against, and the class name of the URL handler to use when that
pattern is matched. Note that order is important here. If a URL handler that
comes before yours has a pattern that matches your URL, then it will
handle the URL you want your handler to handle. For the example of the
accounting department file folder, the line might look like this:

{“^/sales-reports/” : “WebGUI::URL::SalesReports”},

69

WebGUI Developers Guide

After making any config file change, don't forget to restart your mod_perl
server.

Examples

The following examples should get you started in writing your own URL
handlers.

Hello World

Here's how you'd write a Hello World URL handler.

package WebGUI::URL::HelloWorld;

use strict;
use Apache2::Const -compile => qw(OK DECLINED);

sub handler {
 my ($request, $server, $config) = @_;
 $request->push_handlers(PerlAccessHandler => sub {
 my $session = WebGUI::Session->open($server->dir_config('WebguiRoot'),

$config->getFilename, $request, $server);
 $session->http->sendHeader;
 $session->output->print(“Hello World”);
 return Apache2::Const::OK;
 });
 return Apache2::Const::OK;
}

From the Core

WebGUI comes with many URL handlers, so when looking at how to build
your own, it may be helpful to have a look at those that have already been
created.

For example, WebGUI has a handler called PassThru, which does nothing
more than tell Apache that WebGUI doesn't want to handle this URL itself.
When Apache sees this, it takes the request back from WebGUI and
continues its own processing.

There's another called WebGUI::URL::Content, which itself is just another
plug-in mechanism. Instead of handling content based upon any specific
URL, it hands off processing to another set of plugins which processes not

70

WebGUI Developers Guide

only the URL, but the entire request to see if they can handle it. Assets are
processed via this mechanism. See the chapter on Content Handlers for
more information.

WebGUI also comes with a URL handler called WebGUI::URL::Uploads,
which determines whether a particular user has permissions to access
something in the /uploads folder. If the file has no privileges, or allows for
people in the “Visitors” or “Everyone” group to access the file, then the file
is served. Otherwise, a permission denied message is sent to the user.

Have a look at the WebGUI::URL::Uploads handler in detail. URL handlers
are a standard Perl Module like everything else in WebGUI, so it starts out
with the package and use declarations:

package WebGUI::URL::Uploads;
use strict;
use Apache2::Const -compile => qw(OK DECLINED NOT_FOUND AUTH_REQUIRED);
use WebGUI::Session;

In this example, a number of Apache constants that you want to use are
declared. These constants allow you to control how Apache serves the file.
You'll see them used as you move further into the handler.

Now, declare a single subroutine called “handler”; the name “handler” is
required.

sub handler {
 my ($request, $server, $config) = @_;

All URL handlers get the Apache $request, and Apache $server objects
passed into them, along with a reference to the WebGUI config file for this
host.

Next, declare what subroutine should handle privileges:

$request->push_handlers(PerlAccessHandler => sub { ... });

The reason you do this step, rather than just running the code to determine
privileges, is because WebGUI URL handlers are actually called during the
PerlInitHandler phase. This allows WebGUI URL handlers to control any
aspect of the request that you want. Since the uploads handler is dealing

71

WebGUI Developers Guide

specifically with permissions, it makes sense that it adds a
PerlAccessHandler and not a PerlResponseHandler. After all, you want
Apache to do what it does best: serve up the files after you determine if the
user has the right to access it.

Take a look at what that subroutine looks like:

 if (-e $request->filename) {
...

 }
 else {
 return Apache2::Const::NOT_FOUND;
 }

First, check to see that the file requested exists. If not, there's no point in
checking privileges on it, so you can return a NOT_FOUND constant. Then,
see if the folder containing the file has a .wgaccess file. If not, it's assumed
that the file is accessible by everyone, and you can return the constant OK,
telling Apache it can send the file.

my $path = $request->filename;
 $path =~ s/^(\/.*\/).*$/$1/;
 if (-e $path.".wgaccess") {

...
}

 return Apache2::Const::OK;

Then, read in the contents of the .wgaccess file to see what privileges it
says the file should have. If the group to view is 7 (the “Everyone” group) or
1 (the “Visitors” group), then again let Apache serve the file.

 my $fileContents;
 open(my $FILE, "<" ,$path.".wgaccess");
 while (my $line = <$FILE>) {
 $fileContents .= $line;
 }
 close($FILE);
 my @privs = split("\n", $fileContents);
 unless ($privs[1] eq "7" || $privs[1] eq "1") {

...
 }

72

WebGUI Developers Guide

If the groups are anything else, then you have no choice but to instantiate a
WebGUI Session and check to see if the user is a member of the
appropriate group.

 my $session = WebGUI::Session->open($server->dir_config('WebguiRoot'),
$config->getFilename, $request, $server);

 my $hasPrivs = ($session->var->get("userId") eq $privs[0]
|| $session->user->isInGroup($privs[1])
|| $session->user->isInGroup($privs[2]));

 $session->close();
 unless ($hasPrivs) {
 return Apache2::Const::AUTH_REQUIRED;
 }

If the user doesn't pass the check, you return AUTH_REQUIRED so Apache
can display the appropriate error message.

Finally, return the constant OK to Apache. This tells Apache that you are
done with the Init phase. If you ultimately decide not to handle the Init
phase you could return Apache2::Const::DECLINED instead.

return Apache2::Const::OK;

Custom Privileges

Let's say your boss tells you that you need to protect a folder full of PDF
sales reports so that only people in the accounting and sales departments
can view them. Being the enterprising developer that you are, you know
that a list of who's in each of these departments is already maintained in
your WebGUI intranet, so why reinvent the wheel, just use those lists.

Start out by building a base package:

package WebGUI::URL::SalesReports;
use strict;
use Apache2::Const -compile => qw(OK AUTH_REQUIRED);
use WebGUI::Session;

73

Do the least expensive checks first, and go to the most
expensive checks only as a last resort. At this level the last
thing you want to do is introduce inefficiency. Keep that in
mind as you develop your own URL handlers.

WebGUI Developers Guide

sub handler {
 my ($request, $server, $config) = @_;
 $request->push_handlers(PerlAccessHandler => sub {
 ... our code will go here ...
 });
 return Apache2::Const::DECLINED;
}

1;

Then, flesh out the handler() subroutine with the logic you need. Start with
the group ID's for the groups that can access the files:

 my $sales = “XXXXXXXXXXXXXXXXXXXXXX”;
 my $accounting = “YYYYYYYYYYYYYYYYYYYYYY”;

Instantiate a session:

 my $session = WebGUI::Session->open($server->dir_config('WebguiRoot'),
$config->getFilename, $request, $server);

The session already knows who the user is, so you can ask it for the user:

 my $user = $session->user;

Then add your conditional statement for returning the file based upon user
privileges:

 if ($user->isInGroup($sales) || $user->isInGroup($accounting)) {
 return Apache2::Const::OK;
 }
 else {
 return Apache2::Const::AUTH_REQUIRED;
 }

74

WebGUI Developers Guide

With just those few lines of code, you're done! See the section above for
adding your handler to your config file. Here's the final code:

package WebGUI::URL::SalesReports;
use strict;
use Apache2::Const -compile => qw(OK AUTH_REQUIRED);
use WebGUI::Session;

sub handler {
 my ($request, $server, $config) = @_;
 $request->push_handlers(PerlAccessHandler => sub {
 my $sales = “XXXXXXXXXXXXXXXXXXXXXX”;
 my $accounting = “YYYYYYYYYYYYYYYYYYYYYY”;
 my $session = WebGUI::Session->open($server->dir_config('WebguiRoot'),
 $config->getFilename, $request, $server);
 my $user = $session->user;
 if ($user->isInGroup($sales) || $user->isInGroup($accounting)) {
 return Apache2::Const::OK;
 }
 else {
 return Apache2::Const::AUTH_REQUIRED;
 }
 });
 return Apache2::Const::DECLINED;
}

1;

75

WebGUI Developers Guide

Content Handlers
Content handlers give you an easy way to add your own functionality to
WebGUI without having to incur the complexity of assets and URL
handlers. Content handlers are given a WebGUI session, so you don't even
need to set that up. Content handlers, equal to macros, are the easiest
plugin you can write for WebGUI.

Request Cycle

Since content handlers are called by a URL handler, they sit in a position
directly after the URL handlers. In the diagram below the grey areas are the
URL handlers, and the black areas are content handlers.

76

WebGUI Developers Guide

When to Use

Content handlers should be written whenever you want to write something
that doesn't need to directly interact with the request cycle, and doesn't
need the power of an asset, but does need to be able to do round-trip
requests. For example, a macro is an output mechanism only. You can't
post back to a macro;however, with a content handler you can post back to
it.

77

WebGUI Developers Guide

Content handlers need to decide when they will or won't handle a request.
They are usually either looking for a specific URL to be requested (like an
asset has a specific URL), or they're looking for something in the POST or
GET parameters (like operations look for '?op='). If you don't put this sort
of condition in, then the handler will always be called, and nothing else will
ever get through. See the Hello World example later in this chapter for an
example of that.

You may write a content handler as a gateway into some subsystem, such
as the Shop content handler acts as a gateway into the WebGUI e-
commerce functions. You may also use it to allow a macro to post back to
the server, using the macro to display some output, and using the content
handler to process the results of the post back.

Configuration

Configuring content handlers is relatively simple. Just add your content
handler to the contentHandlers directive in the WebGUI config file. The
default configuration looks something like this:

"contentHandlers" : [
 "WebGUI::Content::Prefetch",
 "WebGUI::Content::Maintenance",
 "WebGUI::Content::Referral",
 "WebGUI::Content::Operation",
 "WebGUI::Content::Setup",
 "WebGUI::Content::Shop",
 "WebGUI::Content::Asset"
]

The order in which the content handler is specified is particularly important.
Whichever is the first to return a value other than undef is the one that gets
to service the request.

To add your own handler, simply add it to the list like this:

 “WebGUI::Content::EmailProcessor”,

Examples

The following examples should get you started in writing your own content
handlers.

78

WebGUI Developers Guide

Hello World

This is the simplest content handler you can write. Of course, it's also
utterly useless. =)

package WebGUI::Content::HelloWorld;

use strict;

sub handler {
return “Hello World”;

}

1;

From the Core

WebGUI has many content handlers out of the box. Use these to get an
idea of both how to build your own, and what they are capable of. Here's a
brief rundown of some of them.

WebGUI::Content::Referral

WebGUI::Content::Referral never outputs anything. Instead, it tracks which
site a new visitor to the site came from. As of this writing, this subsystem
has very little functionality, and no reporting mechanism, but it does a good
job as a proof of concept of how a content handler can be used for simple
tracking.

WebGUI::Content::Asset

The WebGUI::Content::Asset handler instantiates the asset subsystem. It
matches a URL to an asset using the database, and then hands off the
request to the asset to complete processing. This is a great example of a
URL based content handler.

WebGUI::Content::Shop

The WebGUI::Content::Shop handler is a good example of a URL query
parameter (GET/POST parameter) based content handler. It looks at the
query parameters, and if there's one called “shop” then it tries to invoke the
commerce system. For example, if a URL looks like /home?shop=cart it will
show you the shopping cart.

79

WebGUI Developers Guide

WebGUI::Content::Setup

The WebGUI::Content::Setup handler looks for a variable called
specialState in the settings database table. If it's set to “init” then it will be
invoked. This is what drives the WebGUI Site Configuration wizard.

WebGUI::Content::Maintenance

The WebGUI::Content::Maintenance handler also looks in the settings table
for the specialState variable, but it's looking for a value of “upgrading”,
which is set by sbin/upgrade.pl while it's running. Have a look at how this
works. First, initialize the package like any other Perl module:

package WebGUI::Content::Maintenance;
use strict;

Then, create the required subroutine that all content handlers require:

sub handler {
 my $session = shift;
 ...
}

Now, check the settings table for your special variable. If it's not what
you're looking for, return undef so that the next content handler will
process.

 if ($session->setting->get("specialState") eq "upgrading") {
 ...
 }
 return undef;

If the specialState variable does equal “upgrading,” then you will read in
the docs/maintenance.html file and return that back to the user, rather than
the requested page, so that the user knows you're conducting
maintenance.

 $session->http->sendHeader;
 my $output = "";
 open(my $FILE,"<",$session->config->getWebguiRoot."/docs/maintenance.html");
 while (<$FILE>) {

80

WebGUI Developers Guide

 $output .= $_;
 }
 close($FILE);
 return $output;

As you can see from these examples, writing content handlers is quite
simple.

Handling a Post from an Arbitrary Form

Let's say your boss tells you that he'd like to collect email addresses from
the people that visit the site, but there's a caveat. He wants to be able to
display the form on every page, maybe in the style template, and wants the
user to be returned back to the page he/she was visiting. You may decide
to put the form directly into the style template, or you may use a snippet, or
you may even create a macro for it. It really doesn't matter how the form is
created. All that matters is that you can use a very simple content handler
to capture the email addresses.

Say the form he wants looks like this:

<form>
Gimme Yer Email Sucka: <input type=”text” name=”email” />
<input type=”submit” />
</form>

You decide that you will look for a form parameter called
“storeThisEmailAddress” when it equals “1”, so you add a hidden field to
his form, like so:

<input type=”hidden” name=”storeThisEmailAddress” value=”1” />

Now you write a content handler to deal with this. First, start with a basic
package.

package WebGUI::Content::EmailProcessor;

use strict;

sub handler {

81

WebGUI Developers Guide

 my $session = shift;
 ... our code goes here ...
}

1;

Then, add a condition that you'll use to activate the handler.

 if ($session->form->get('storeThisEmailAddress')) {
 ...
 }

If it's true, then you can add your code to store the email address.

 $session->db->write(“insert into emailStorage (email) values (?)”,
 [$session->form->get('email')]);

Finally, always return undef from this handler because you want the user to
be returned back to the page he/she was previously viewing.

 return undef;

That's all there is to it! Here's what the final code looks like:

package WebGUI::Content::EmailProcessor;

use strict;

sub handler {
 my $session = shift;
 if ($session->form->get('storeThisEmailAddress')) {
 $session->db->write(“insert into emailStorage (email) values (?)”,
 [$session->form->get('email')]);
 }
 return undef;
}

1;

82

WebGUI Developers Guide

Form Controls
A significant part of traditional thick client application development over the
last two decades has focused on so-called GUI's – graphical user
interfaces. A GUI is a means of using visual metaphors and event-driven
programming to allow a user to visually control and interact with a program.
GUI's feature controls (referred to as widgets by some documentation)
which are actual interface components with which the user can directly
interact. These include buttons, drop-down lists, text input boxes, and
things of that sort which have a defined way to visually respond to interface
events. Object-oriented control toolkits (such as Microsoft's Windows
Forms© framework, or the QtGui module of Trolltech's Qt© framework)
typically use object-oriented techniques like inheritance to facilitate
understanding and development.

WebGUI, being a GUI for web applications, also supports controls. Just like
for thick client toolkits, WebGUI controls must be defined in code before
they can be used. However, instead of using bulky designers to lay out the
positioning of the controls, code and markup are used to precisely specify
where they should be and how they should behave. Once constructed in
code, however, the WebGUI UI allows for familiar point-and-click layout.

Form controls are used in WebGUI in a manner similar to how they are used
in traditional thick clients: to convey data to WebGUI in a variety of different
formats. This can be anything from a standard text entry to a hexadecimal
color chooser or even an asset selector. These values are then passed in
on form submission and are handled by the appropriate backend code. The
backend code is not part of the form control code; the form control code is
strictly and specifically concerned with just the interface and the behavior
thereof, not with any logic associated with handling the data input into the
control. Similar to the rest of WebGUI, and any well-designed application,
the interface is separated from the behavior in this way.

In contrast to a WebGUI asset, form controls are for entering data, rather
than displaying it. Form controls are generally part of an asset, but only for
information to be displayed on that asset or otherwise used. An asset with
a form control collects data from the users. After that data has been
collected and processed, it's usually displayed on an asset (sometimes the
same asset containing the form control, sometimes not). Use a form control
in an asset for data collection and an asset for data display.

83

WebGUI Developers Guide

Before starting development of a new form control, there are several
questions to ask. Much of this is common to all development and won't be
covered here. However, there is one important question to consider before
starting: does the functionality of this form control require any kind of active
document technology, like Javascript? Form controls can use Javascript to
implement their functionality, and it's important from a design perspective
to know whether any potential controls need Javascript before starting
development.

Hello World

The simplest example of a form control—or most any computer related
task—is the “hello world”. This ensures that the tools (here, form controls)
work, and it also serves to familiarize users with the tools and the
environment. For form controls, this starts with the _control.skeleton file in
the WebGUI/lib/WebGUI/Form directory. This file contains everything a form
control needs, and more than it needs for a “hello world” example. The
“hello world” form control won't output a form, but rather just the text,
“Hello world!” To do this:

● copy the skeleton file to a new .pm file in the Form directory

● change the package line at the top of the file accordingly

● change the definition and toHtml methods accordingly:

sub definition {
 my $class = shift;
 my $session = shift;
 my $definition = shift || [];
 push(@{$definition}, {});
 return $class->SUPER::definition($session, $definition);
}
sub toHtml {
 my $self = shift;
 return 'hello world!';
}

After these steps, modify an asset's view method and style template to
include the control.

84

WebGUI Developers Guide

sub view {
 # other stuff
 $var->{helloWorldControl} = WebGUI::Form::HelloWorld->new($session);
 # other stuff
}

Then, include the template variable for the form control in the style
template.

<tmpl_var helloWorldControl>

A Simple Example: Button

In order to better grasp how form controls work, a simple, functional, and
easy to understand example works best. Perhaps the simplest of these is
the humble, ubiquitous button. The button's entire existence is to serve as
a punching bag, taking with stoic acceptance the beatings of hundreds or
thousands of users a day. Yet buttons serve a very powerful purpose:
without them (and excluding Javascript for the moment), form submissions
would not be possible.

All WebGUI form controls live under the WebGUI/lib/WebGUI/Form
directory in the WebGUI source tree. Each control is its own separate Perl
module; the module for the button is WebGUI/lib/WebGUI/Form/Button.pm.
For the sake of brevity (and the assumption that readers of this developer's
manual have ready access to a computer with the WebGUI source code),
the code for the button control is not reproduced here. However, a few
parts of the code do deserve mention.

The first important part is the use base 'WebGUI::Form::Control'; line. All
form controls must inherit from WebGUI::Form::Control. This class provides
functionality necessary and common to all form controls. There are several
methods that a form control should or must override, as well. These include
getName, generateIdParameter, and toHtml. The details of overriding these
methods will be discussed shortly.

The next important section is the definition subroutine. Like with most parts
of WebGUI, this contains meta-information about the class in question, and
default values for various attributes. It is, indeed, a definition, a kind of
declarative programming. As with all definition subroutines, this one
receives several parameters. The first is the class, followed by the
WebGUI::Session object, and then the definition that this particular class
extends, if any. WebGUI::Form::Button, being a child class of

85

WebGUI Developers Guide

WebGUI::Form::Control, inherits many fields from WebGUI::Form::Control.
However, the button class leaves most of these at their defaults and only
defines a few.

Following this is the toHtml subroutine. For most controls, this subroutine
does most of the important work. As its name implies, this subroutine
generates the HTML required for rendering the control in the browser and
any behavior associated with its interface. This can also include Javascript
to enhance the behavior of the control. There are several controls which
don't define their own toHtml method. Instead, they rely on a parent class
to provide the required functionality.

It's time to take a look at what's needed to include a button on a page.
Typically, in WebGUI, “page” means “asset”, so this will begin by going
over some code and related template markup to include a button on a
page. The button will be relatively simple, and will just display a message
box saying “Hello, World!” to the user when clicked. In standard WebGUI
style, the button will be inserted into the $var hashref passed to the
processTemplate method of all assets. The template code will show how to
include the button in an HTML document. First, the Perl code:

sub view {
my $self = shift;
my $session = $self->session;

declare $var here, put stuff in it

$var->{simpleButton} = WebGUI::Form::Button($session, {
name => 'simpleButton',
value => 'simpleButton',
extras => q|onClick="alert('Hello, world!')"|,
});

other stuff this asset needs to do
then call processTemplate and pass it $var

}

As for the template, it's as simple as designing the surrounding markup and
including it in a tmpl_var statement like so:

<tmpl_var simpleButton>

86

WebGUI Developers Guide

Now, of course, this particular demonstration doesn't do anything
altogether useful. However, it does establish the basic things required to
get a button working on an asset. The rest is just additional logic.

For a deeper understanding of how this actually works, take a look at the
HTML generated by this example. Again, it's relatively simple, but knowing
what it outputs is nonetheless crucial in forming a complete understanding
of how the button control functions and interacts with other page elements.

<input type="button" name="simpleButton" id="simpleButton_formId"
value="simpleButton" onClick="alert('hello, world!')" />

Everything here is rather straightforward: the name and value parameters
passed to the constructor are mapped directly to the corresponding values
in the HTML. As detailed above, the id parameter is constructed from the
name with “_formId” appended. The extras field is appended as a raw
string value. This is important to note, because it allows for the
specification of custom attributes or behavior for the button that may not
be specified in any other way.

As shown above, buttons are actually rather flexible. They serve as starting
points for any kind of custom behavior whatsoever. They're similar to their
counterparts in thick client applications, but with a few particularities about
them resulting from the implementation of HTTP. In stark comparison to
thick clients, web applications like WebGUI communicate over HTTP. The
important thing to note here is that HTTP is a stateless protocol. What this
means is that the web server doesn't keep track of values the user has
filled in on various forms between client requests. Thus, other means -like
cookies, request parameters, and session information stored in a database
– must be used to maintain the information the user filled out on the page
between submissions. To this end, any information that needs to persist
across page requests must be passed along in one of these ways. While
buttons aren't specifically concerned with submitting information, one of
button's child classes, WebGUI::Form::Submit, is.

The submit form control is the ubiquitous submit button seen all over the
web made into a form control. Its most typical use is to, obviously, submit
some kind of data to the server. This requires an HTTP POST, typically,
which requires a page load, so the information needs to be submitted along
with the POST request, typically as parameters.

87

WebGUI Developers Guide

Getting Attached: the Attachment Control

The button is relatively simple to understand. To develop a more thorough
understanding of form controls, how they interact with pages and how to
include them in pages, take a look at a more complicated example. The
attachment control, used in WebGUI's powerful and extensive Wiki asset,
allows for file attachments to be made to Wiki pages.

The attachment control allows for all the necessary operations on
attachments: creating, reading, deleting. These three operations are
supported using www_ helper methods. These function in much the same
way as www_ helper methods do in assets: WebGUI invokes them based
upon parameters passed in on the URL of the request, but with the www_
part stripped. For example, to call the www_delete method of the
attachments control, the URL would look something like this:

http://your.company.com/wiki/funWikiPage?op=formHelper;class=Attachm
ents;sub=delete;maxAttachments=5;maxImageSize=100000;thumbnailSize
=50;attachments=yfyFDxQam6bEMxbwxu1QEw;assetId=yfyFDxQam6bEM
xbwxu1QEw;name=attachments

To fully understand what's going on, analyze this piece by piece. First, the
standard protocol prefix, followed by the domain name. Then the location
of the wiki asset in the tree, and a page of that wiki (“funWikiPage”). Next is
an invocation of a WebGUI operation. The formHelper operation specifies
the class name (Attachments, here, expanded to
WebGUI::Form::Attachments) and the web-accessible method to call on
that attachment (here, delete). Following are parameters required for
attachment operation. The attachments parameter, which may be specified
more than once, lists the attachments for this particular Wiki page. Next,
the assetId parameter specifies the actual attachment to delete.

The quick run-through above details a specific feature of the attachment
control. What about how the code works, and how to include an
attachment form on a page? Let's start with the attachment definition. The
definition contains a few fields particular to the attachment control that are
noteworthy. The first of these, maxAttachments, specifies the maximum
number of attachments the control will accept at any one time. For the
WikiPage asset, this is specified in the Security tab and defaults to zero.
The next two fields, maxImageSize and thumbnailSize, describe the
maximum and thumbnail image sizes for attachments, respectively.

88

WebGUI Developers Guide

The next noteworthy aspect of the attachment control is the
getValueFromPost method. This method returns an arrayref of asset ID's.
When files are uploaded via the attachment control, they are placed in a
temporary location. It is the developer's responsibility to move these to a
proper location, or else they'll be deleted.

Next is the toHtml method. Just like in button, this method renders the
HTML required for this form control to function on the page. Take a look at
the HTML generated by this control. There are two parts: an iframe, and the
code rendered by the iframe. Here's the iframe code:

<iframe
src="/wiki?op=formHelper;class=Attachments;sub=show;name=attachments;maxAttachm
ents=1;maxImageSize=100000;thumbnailSize=50;" style="width: 100%; height:
120px;"></iframe><div id="attachments_formId"></div></td></tr>

And here's the HTML generated by the iframe:

<html><head> <script src="/extras/AttachmentsControl/AttachmentsControl.js"
type="text/JavaScript"></script>
<link href="/extras/AttachmentsControl/AttachmentsControl.css" rel="stylesheet"
type="text/css" />

 <script type="text/javascript">
 parent.document.getElementById("attachments_formId").innerHTML = '';
 </script>
 </head> <body>
 <div id="uploadForm">
 <a href="#" onclick="WebguiAttachmentUploadForm.hide();"
id="uploadFormCloser">X
 <form action="/wiki" enctype="multipart/form-data" method="post">

 <input type="hidden" name="maxAttachments" value="1" />
 <input type="hidden" name="maxImageSize" value="100000" />
 <input type="hidden" name="thumbnailSize" value="50" />
 <input type="hidden" name="name" value="attachments" />
 <input type="hidden" name="op" value="formHelper" />
 <input type="hidden" name="class" value="Attachments" />
 <input type="hidden" name="sub" value="upload" /> <input type="file"
name="attachment" />
 <input type="submit" value="Upload" /> </form> </div>

 Upload
an attachment.

89

WebGUI Developers Guide

 <div id="instructions">Upload attachments here. Copy and paste attachments
into the editor.</div>
 <div id="attachments"> </div> </body> </html>

Again, as you can see, the properties of the control are propagated to
various parts of the HTML. The actual content of the iframe is a relatively
basic file upload form with some hidden fields to maintain state. One thing
to note is that the sub parameter of the processed form contains “upload”
Again, this corresponds to the www_upload method in the attachments
class.

Next is the www_delete web method. As discussed earlier, this method
deletes an attachment from the relevant asset. All attachments are stored
as assets, so they have access to all of the functionality available to assets:
getting ID's, content, exporting, and cleanup methods. The www_delete
method uses one of these cleanup methods, purge, to remove the
attachment from the asset. When finished, www_delete calls www_show,
described next, and returns the value returned from that web subroutine.

The www_show method is rather large, and has a lot going on. As with all
but the most trivial subroutines, www_show starts with declaring some
variables to be used throughout the sub. If called with a second parameter,
it initializes a lexical variable to that parameter (the call in www_delete
works this way); otherwise, it takes the parameter list from the URL. Next,
after disabling cache control and adding necessary Javascript and style
information, the method prepares the markup required for the upload form.
Then, the markup used for managing attachments is constructed. After
this, the final content, containing the list of existing attachments, the
upload form, and management controls, is constructed, and returned.

Last is the www_upload method. Like with www_show, www_upload starts
with collecting some information, including information required for saving
state. Then there's a call to a very particular method:
addFileFromFormPost. This method in the WebGUI::Storage class,
obviously, handles uploaded files from form posts. The method saves the
content of the file to a location in WebGUI's storage, and returns the
filename of where the file was saved. After a security check preventing
visitors from doing naughty things with items they've put in tempspace, the
method assigns some properties and creates an asset from the uploaded
file. After, it adds the new asset's ID to the list of attachments for this asset
and calls www_show with the session and this array of asset ID's. Finally, it
clears the temporary storage and returns the result of calling www_view,

90

WebGUI Developers Guide

with the session object and the new list of asset ID's.

That's what the methods do. But... how does the blasted thing actually
work? Let's take a look at it one step at a time, from the browser's
perspective. First, before anything else, the toHtml method of the control is
called. This generates the iframe. The iframe, as described above, contains
a URL that invokes the www_show method. The www_show method is
where most of the work takes place. Almost all of the content is generated
here, and it serves as the main window, so to speak, of a traditional GUI
application. From the layout rendered by the www_show method, all of the
useful functionality of the attachment control can be realized. Uploading
files, viewing and managing files, deleting files... it's all possible from this
view. Each of these functions invokes a different www_ helper method.

Writing Your Own Form Control

So far, an example of a simple control (the button control) and a more
complex control (the attachments control) have been introduced, but what
are the steps needed to construct your own form control? Like most parts
of WebGUI, form controls have a ready-made skeleton file that you can
copy and use as a starting point for custom development. This file is
located in the WebGUI/lib/WebGUI/Form directory and is named
_control.skeleton. Let's examine this file and see how you can use it to put
together your very own form control.

First, decide on a name for the control. This will designate the name of the
file name, and the package name used to refer to the form in code. For the
purpose of this example, call the control SimpleControl. Copy
_control.skeleton to SimpleControl.pm. Open up the new file, and take a
look at what it provides for you. Each section is covered next.

Before proceeding one step further, change the package name! WebGUI
will be unable to find your control and will give you page compilation errors
if you forget this most crucial, yet easy to forget, step. It's a very simple
thing that, in the excitement of writing new code, developers sometimes
completely neglect. Save yourself future headaches (“I'm positive the code
is correct and it's in the right spot; why can't WebGUI find it? I'm switching
to Mambo...”) and change the package name immediately! You'll thank
yourself later.

Now that you've saved yourself from embarrassment in front of the boss,
take a look at what the skeleton provides and how you can use it. After the
Plain Black copyright statement (feel free to add additional legal

91

WebGUI Developers Guide

information to this section pertinent to your organization), the skeleton has
various use statements that load various modules and set up the necessary
inheritance relationship with WebGUI::Form::Control. Keep the inheritance
statement; that's required for the form control to work and it'll do Bad
Things® if you take it out.

Next is the obligatory definition subroutine. It's pretty boilerplate, really, but
all the parts are there for you to extend in any way you need. Custom fields
are easy enough to add, like the thumbnailSize field for the attachments
control.

After that is getValueFromPost. This method appeared in the attachments
control, but not the button control (there's no information to get from a
button; if there's a post at all, you know the button was clicked, and that's
the only information the button can provide). Depending upon the
functionality of the control you intend to design, you may or may not need
this method.

Following getValueFromPost is toHtml. This method, of course, outputs the
initial HTML the user sees when they see your control. This could be all
they need to see, like with button, or it could be just the beginning, leading
to a more complex presentation, like with attachments. Either way, you'll
very likely need to change this to output the HTML and/or JavaScript
required for your control to function.

That's it. Of course, you'll probably want to divide your functionality into
methods and www_ helper functions as designated by your specifications.
There are plenty of examples of how to do things already, and it's not
uncommon at all for form controls to inherit from one another or use one
another to accomplish their tasks. There are dozens of instances of form
controls reusing code. Don't be afraid to do the same yourself!

As for using your new control in your control, it's a fairly simple procedure.
First, you need to use the package containing the code for your control
(remember you had to change the package declaration when you copied
the skeleton? You did do that, right?), and then instantiate it. It'll look
something like this:

use WebGUI::Form::SimpleControl;

somewhere in your asset code
my $formHeader = WebGUI::Form::formHeader(...);
my $simpleControl = WebGUI::Form::SimpleControl->new($session, foo => bar, baz =>

92

WebGUI Developers Guide

quux);
my $formFooter = WebGUI::Form::formFooter(...);

Then, put these objects in your template and you're set.

93

WebGUI Developers Guide

Authentication Plugins
Authentication in WebGUI allows plugins, providing you the power and
flexibility of defining how users authenticate against your site. If you want
users coming from a particular IP address to be authenticated
automatically, you can do that. If you would like to create a wizard for
creating a new account, you can do that as well. Nearly anything is
possible with WebGUI's authentication system.

History

WebGUI has allowed authentication plugins since version 5. One of the
drawbacks with authentication in version 5 was that you were limited to the
set of routines that WebGUI itself expected to call in various places. Thus,
you couldn't create or define your own set of rules for authentication. You
could only modify the existing rules in an attempt to make them match your
requirements. This drawback caused a reevaluation of authentication in
WebGUI. WebGUI's developers wanted to provide users with the most
flexibility possible while at the same time making authentication plugins
easy to develop and manage.

Authentication as it exists in WebGUI today came with the release of
WebGUI 6.0. It is object oriented, making it possible to build on existing
authentication plugins, which makes them easy and fast to develop. It is
also infinitely flexible. You can choose to use or build upon existing
methods available through the Authentication package, or you can choose
to completely ignore the existing framework and create your own. As you
will see in upcoming chapters, the possibilities are limitless.

General Authentication Structure

Authentication is structured such that it is possible to do anything you wish.
To make this possible, a single global web operation exists for all
authentication methods: op=auth. This method serves as a router into an
Authentication plugin. By specifying this at the end of a URL, you tell
WebGUI that you wish to make a call within the active authentication
plugin. If you wish to see this method, it can be found in
WebGUI::Operation::Auth.

In order to call a method from within WebGUI, you must then specify a
method within the plugin. You do this by specifying the method after the

94

WebGUI Developers Guide

op=auth call: op=auth;method=login

This calls the login method within the active Authentication plugin. If the
current authentication method is the default, or WebGUI authentication, this
will call the login method within Auth::WebGUI. Be aware that the method
you specify will only be called if it is flagged as “callable” from within the
Authentication plugin. More will be covered about this
and how to protect methods in your custom
authentication plugins later.

WebGUI itself makes only one call within any
authentication method. This will be discussed a
bit later. For now, you should know that the only
method called by WebGUI's core is “init”. By
overriding the init method, you get to decide
what you want WebGUI to do when it calls your
authentication plugin. This gives you ultimate
freedom in creating an authentication framework
within WebGUI.

Writing a Custom Authentication Plugin

Now that you have a basic understanding of how authentication in WebGUI
works, it's time to get into the nuts and bolts of writing a custom plugin.
The first thing you'll need to decide is what you want your authentication
plugin to do and if you can reuse either of the authentication plugins that
ship with WebGUI, or any other custom authentication plugin you may have
access to. This will determine the starting point of your custom
authentication plugin and, as you'll learn later, determines how much of the
authentication plugin you actually need to write yourself as some of it could
be inherited.

Every authentication plugin in WebGUI is an extension of WebGUI::Auth. If
you open this module and look through the various methods, you will see
that there are many methods that will be inherited into your custom plugin.
You may choose to use, not use, or change the way that these methods
work. Most of these methods are discussed in this chapter, so don't spend
too much time trying to figure out what is going on here. Once you've
decided what you'll be extending (WebGUI::Auth or some subclass
thereof), inherit from that class as you would in any regular OO Perl
application by using base 'WebGUI::Auth';

95

If you choose not to
enable the methods
discussed later in this
chapter, some macros
may not work, and
you may need to
change the URL's of
some template
variables for some
functions in WebGUI
should you choose to
implement them.

WebGUI Developers Guide

Auth Constructor

Like any other object oriented application, you begin writing authentication
plugins by creating a constructor. The constructor of your authentication
plugin is responsible for setting up a framework for individual
authentication sessions. It is important to remember this as authentication
deals with one person at a time, not large groups of people.

Also, it is important to understand that you will rarely be responsible for
instantiating authentication. WebGUI will typically do this for you once your
authentication method is plugged into the system. Typically, you will
instantiate authentication in your own custom code, such as if you were
building a custom asset or utility script that needed to find out some
information about a user's authentication information.

The superclass constructor expects a few things to be passed along in
order to instantiate an instance of an authentication plugin:

● WebGUI Session (session): the current active WebGUI session.

● Authentication Identifier (authMethod): the identifier for the
authentication method you wish to instantiate. This is covered more
later.

● User Id (userId): the GUID (Generic Unique ID) of the user that you
wish to instantiate an authentication method for.

You can expect that these items will be passed into your constructor by
WebGUI whenever your authentication plugin is instantiated and that the
superclass expects them in order to properly set up an authentication
framework. Additionally, these items are stored as object data by the
superclass which makes them, as well as a few other other convenience
instance methods, available to you.

Assume $auth is an instance of a WebGUI Authentication plugin.
$auth->authMethod([authMethodIdentifier]) returns or resets the
authentication identifier within the current instance of this authentication
plugin. This method is important because it determines the authentication
plugin that methods will be called from. It is possible to change this value
so be careful. Why would you want to change the authentication method?
Typically you wouldn't, but in cases where a site runs more than one
authentication method, WebGUI will identify the individual's auth method at
login time and change the authentication identifier to the proper one.

96

WebGUI Developers Guide

For example, if a site is configured to use WebGUI's default authentication
method, but has some individuals who authenticate through LDAP, when
those individuals attempt to log in WebGUI needs to make calls to the
proper authentication plugin to properly authenticate them. When they first
come to the site, they are essentially logged in as the visitor user, which
uses the WebGUI authentication plugin. When the user attempts to log in,
WebGUI looks up the authentication identifier associated with the user's
account via the username entered, and then changes the authentication
identifier currently stored if it is different than what visitor uses. Then, when
the init method is called (shown shortly), it is called from the proper
module. In the case of users that authenticate via LDAP, that would be the
WebGUI::Auth::LDAP module. For those that authenticate via WebGUI, it
would be the WebGUI::Auth::WebGUI module.

$auth->session

This returns the session object. You'll need this to retrieve various tasks in
your methods.

$auth->user([$user_object])

This returns or resets the user object within the current instance of this
authentication plugin. This is an important method for several reasons.
Once you've instantiated your auth method, you should never have to
create the user object again, which is very slow. Additionally, you use this
method to reset the user that is currently associated with this
authentication session. Why would you want to do that? Take the following
example:

Someone comes to a WebGUI site using WebGUI's default
authentication plugin and does not have a valid WebGUI session
cookie identifying them. The user is logged in as the “Visitor” user
(userId 1) by default. Once the user successfully logs onto the site
(however that might happen), you want to change the userId that is
associated with the current authentication framework to that of the
user that just logged in. To do this, after a successful authentication
call: $auth->user(WebGUI::User->new($auth->session,$userId)).

You can see an example of this in WebGUI::Auth::authenticate.

97

WebGUI Developers Guide

$auth->userId

This is a convenience method which returns the userId for the user
currently set in the authentication method. This is equivalent to $auth-
>user->userId.

$auth->username

This is a convenience method which returns the username for the user
currently set in the authentication method. This is equivalent to $auth-
>user->username.

The constructor also initializes some object data that can be used to
retrieve or set warning and errors from the superclass. Many times there is
a need to return varying amounts of data to a method call. In authentication
this often happens in the form of returning success, or an error and an error
message. Rather than having to do things like return zero on success or a
message if an error happened, or true and undef in the case of no error, the
authentication system allows you to simply return true or false and set
object data containing any errors or warnings that you might want to throw.

$auth->error([$errorMessage])

This returns or sets the current error message stored in object data.

$auth->warning([$warningMessage])

This returns or sets the current warning message stored in object data.

Let's say you are validating that a password entered complies with some
custom rules you require for entering passwords. There could be many
reasons the password doesn't pass the test. Instead of having to name
your method something like passwordIsNotValid and return false if the
password is valid, you can simply return true or false and set a warning or
error in object data that can be used if necessary:

my $false = 0;
if(length($password) < 10) {

$self->error(“Passwords must be 10 characters long”);
 return $false;

}

98

WebGUI Developers Guide

Finally, the constructor is where you need to declare the methods in your
authentication plugin are “callable” via a URL. You do this using the
following API method.

$auth->setCallable(\@callableMethods)

This security feature enables you to write an unlimited amount of methods
in your authentication plugin, but have a limited number that can be called
in the form of op=auth;method=yourMethod. Methods that are not declared
in this fashion will not be allowed to be called from the URL.

Once you have created an instance of your authentication method, use the
setCallable method to determine the additional methods you would like to
be called from the URL.

my $auth = $class->SUPER::new(@_);
my @callable = ('login','logout');
$auth->setCallable(\@callable);

This enables the login and logout subroutines of your plugin to be called via
URL. Additionally, you can determine if a method is in the callable stack by
using the following API method.

$auth->isCallable([methodName])

Take a look at the typical constructor of a custom authentication method.

sub new {
#Shift the class off the argument stack
my $class = shift;
#Call the superclass method passing in the remaining argument stack

 my $auth = $class->SUPER::new(@_);
#create a callable array with the methods we'd like to be url accessible
my @callable = (

“login”,
“logout”,
“createAccount”,
“createAccountSave”,
“deactivateAccount”,
“deactivateAccountConfirm”,
“displayAccount”,
“displayLogin”

99

WebGUI Developers Guide

);
#Tell the auth method that the methods in the callable array are url

accessible
 $auth->setCallable(\@callable);

#Return the object
 return $auth;

}

You'll notice that the first thing done is call the superclass method which
returns a valid authentication object of your type. Then, set the callable
methods that you will create or use via inheritance and return a reference to
the blessed authentication plugin. You can now continue to build the
plugin, making customizations as necessary, as you will see in the following
sections.

 init()

As mentioned earlier in the chapter, the init method is the only one that gets
called by WebGUI. This method is the entry point for any authentication
plugin. It is here that you will determine what happens when a user tries to
log in or attempts to access a privileged page as the visitor.

By default, the init method of the Auth superclass calls its displayLogin
method. You can choose to use this method as is, override this method in
your own plugin and make it work the way you need it to work, or you can
override init completely in your plugin and make it do something completely
different.

Let's say you want people coming from a particular IP address to
automatically have access to a portion of your site that normal visitors
should not. If someone tries to access the portion of the site from another
IP address, you want to present the normal login page.

Every asset has three global privilege properties: owner, groupToView, and
groupToEdit. If the user attempting to view the page is not the owner, and
does not belong to either of the groupToView or groupToEdit groups,
WebGUI will call the init method to determine what to do next.

In this example, you would want to create another visitor-like user, that
you'll call “ipvisitor”, using WebGUI's user management system, and add
that user to the groupToView group you've defined for the particular portion
of the site you'd like to restrict to those users.

100

WebGUI Developers Guide

Now, override the init method in your custom auth plugin and check the IP
address of the user attempting to access the site. If the IP address
matches the one you check for, you will automatically log the user in as the
ipvisitor. If not, you'll return the displayLogin page (this method is
discussed in the next section).

sub init {
 #shift the object off the argument stack
 my $self = shift;

#Create a session variable
 my $session = $self->session;
 #Retrieve the allowed IP address from the authentication settings
 my $allowedIP = $self->getSetting("allowedIPAddress");
 #Get the IP address of the visitor
 my $visitorIP = $session->env->getIp();

 #Log the user in of the visitorIP address is the same as the allowed IP
address

#and the user is currently the visitor
 if($self->userId eq “1” && $visitorIP eq $allowedIP) {
 #Retrieve the userId we wish to log users in as from the
 #authentication settings
 my $ipvisitorId = $self->getSetting("ipvisitorId");

 #If the ipvisitorId is not set in the settings, fall through
 if ($ipvisitorId) {
 #Create the ipvisitor user object
 my $ipvisitor = WebGUI::User->new($session,$ipvisitorId);

 #Set the ipvisitor as the user in the auth method
 $self->user($ipvisitor);
 #Log the user in
 return $self->SUPER::login;
 }
 }

 #Otherwise return the displayLogin method
 return $self->displayLogin;

}

Start as you would start building any instance method in an object by
shifting off the object from the argument stack. Then, use the getSetting

101

WebGUI Developers Guide

method of the superclass to return the IP address you've stored in the
authentication settings (how to do this is later in the chapter). Use the
getIp() method from the WebGUI::Session::Env API to retrieve the IP
address of the current user.

Then, check to see if the IP address of the user matches the IP address
stored in the authentication settings. If they do, you'll get the userId of the
ipvisitor user you mentioned earlier, which you also have stored in the
authentication settings. If the userId has been set (you don't want to try to
operate on a userId that doesn't exist), you'll create an instance of the
ipvisitor user object and set that as the new user object for this
authentication session. Once that is done, you can simply return the login
method of the superclass which will log in the user and forward him on to
the page that was trying to be accessed (again, this method is discussed
later in the chapter).

If the IP addresses don't match, simply stick with the default logic and
forward the user on to the displayLogin method of the authentication
plugin.

As you have probably figured out by now, the possibilities in this method
are limitless. As the single point of entry into WebGUI's authentication
system, the init method gives you the power to make your authentication
plugins extremely flexible.

displayLogin()

If you don't choose to override the init method, the displayLogin method
will be returned. This method is really a convenience method which returns
a template containing the core form elements that are used in almost every
traditional login page. Typically, you will not want to override this method,
but instead you will want to extend it with some options that are available
from the superclass.

$auth->displayLogin([postMethod, templateVariables])

“postMethod” is a string which indicates which callable method should be
posted to when the user makes a request. By default, postMethod is set to
“login”, a method you have seen in the previous section and one that will
be covered in the next. If you choose to pass in your own postMethod, the
form will be generated so that when the user fills in his username,
password, and whatever else you might specify, it will post to whichever

102

WebGUI Developers Guide

method you specify. Keep in mind that this method must be listed in your
callable methods. For example, $auth->displayLogin('doLogin'). This will
attempt to post to the doLogin method of your custom authentication
plugin.

“templateVariables” is a hash reference containing template variables that
you can create in your extension of displayLogin that will be exported to
the template. By default, the following template variables are available from
the displayLogin superclass method:

103

WebGUI Developers Guide

Variable Description

title Internationalized title of the login page.

login.form.header <form> open tag containing action
and method.

login.form.hidden Hidden fields which specify which
page to post to.

login.form.username Text field for accepting username
input.

login.form.username.label Internationalized label for username.

login.form.password Password field for accepting
password input.

login.form.password.label Internationalized label for password.

login.form.submit Submit button for posting login
information.

login.form.footer </form> closing tag.

anonymousRegistration.isAllowed Boolean indicating whether or not
users can anonymously register for the
site (this is a global authentication
setting).

createAccount.url A URL which links to the
createAccount authentication method.

createAccount.label Internationalized label for the create
account href.

You extend these by passing in a hash reference of your own custom
template variables that will be used on your display login page. For
instance, say you wanted to add password recovery to your authentication
plugin. You would want to display a URL linking to your password recovery
method, and possibly a label. In order to get those items into your

104

WebGUI Developers Guide

template, you need to pass them along as a hash reference to the
displayLogin superclass method. It is important to note that you cannot
change the template variables in the superclass. If you ever want to change
something that was in the superclass variables, you need to create entirely
new template variables and use those instead. You could also choose to
override the displayLogin method completely and make it do whatever you
need it to do.

Let's extend the displayLogin method and add a few things. First, if the
user is already logged in, you'd rather not display this page. Instead,
bounce the user to the displayAccount page, which will be discussed a bit
later. Next, add an error message that you can display to the user in the
case that login fails for some reason. Finally, add your own password
recovery method. So, you'll add some extra template variables which link
to the password recovery method, which is written later in the chapter.

sub displayLogin {
 #shift the object off the argument stack
 my $self = shift;
 #shift off any message that we might have passed in from a failed login
 my $message = shift;
 #Create a session variable
 my $session = $self->session;
 #Create an empty has to use for our template variables
 my $vars = {};
 #Return the display account page if the user is already logged in
 if($self->userId ne "1" && $self->userId ne $self->getSetting("ipvisitorId")) {
 return $self->displayAccount($message);

}
 #Add some template variables to the empty hash we created
 $vars->{'login.message'} = $message;
 $vars->{'recoverPassword.url'}

 = $session->url->page('op=auth;method=recoverPassword');
 $vars->{'recoverPassword.label'}
 = "Forgot your password? Click here";

#Return the superclass displayLogin method with our additional template
#variables

 return $self->SUPER::displayLogin(undef,$vars);
}

Start out by shifting the session object off the argument stack as usually
done. Also, shift a message off. If an error occurs in the login post method,

105

WebGUI Developers Guide

you'll export the message to the template to display to the user. Now,
check the userId for the authentication session. If the userId is not “1”,
which is the userId of the visitor, and the userId is not that of the ipvisitor
(ipvisitors should be able to log in as another user account), that means
that the user is already logged in. You don't want users who are already
logged in to log in again, so show them the displayAccount form instead
and pass it any message that might be forwarded. If this is the visitor or
ipvisitor user, then you'll set the login message template variable along with
a URL and label for your custom password recovery method and then
return template returned by the displayLogin method of the superclass.

One final thing to note for the displayLogin method is that it is different from
a lot of the other authentication methods in that it is usually called before
you know which authentication method to use. In order for the displayLogin
method of your authentication plugin to be called, you must be sure to set
the default authentication method for the WebGUI site to your
authentication plugin. You do this on the authentication tab of the Settings
screen within WebGUI's Admin Console. For more information on
administering WebGUI, see the WebGUI Administrators Guide.

getLoginTemplateId()

With all this talk of template variables and templates returned by the
displayLogin method, you are probably wondering how to set the template
you would like your method to use. If you have overridden the displayLogin
method completely, this isn't a problem, but if you have extended the
superclass method, in the previous section, you need a way to do this as
templateId wasn't something that could be passed into the superclass
method.

You do this by adding a getLoginTemplateId method to your custom
authentication asset which simply returns the ID of the template to use.
This is typically a setting with a default templateId set to the templateId of
the default template which you provide with your authentication method:

sub getLoginTemplateId {
 #Shift the class off the argument stack
 my $self = shift;
 #Retrieve the templateId from the authentication settings
 my $template = $self->getSetting("loginTemplateId");

#Return the template stored in the settings or the default template
 return $template || "IPtmpl0000000000000003";

}

106

WebGUI Developers Guide

You create similar “get” methods for templates from superclass methods
listed in the table below. You should also create similar template methods
for templates from your custom methods making them easier to subclass.

Superclass Method Template Method

displayAccount getAccountTemplateId

createAccount getCreateAccountTemplateId

login()

Unless you have specified otherwise, the login() method is called when a
user submits the displayLogin form. This method performs the actual login
for the user, so it is almost always the case that you need to extend or
override this method and add the actual authentication logic.

The superclass login method is very general in order to make it easy to
authenticate users however you like. This method changes the user that is
currently in WebGUI session to the user currently stored in the
authentication object instance. If you look inside the login() method of the
WebGUI::Auth, you will see a line of code that looks like this:

$self->session->user({user=>$u});

This one line of code essentially performs the login. This is important to
know if you plan to completely override the login method and make yours
do something else. You will always need this code in some form or other in
your login routine.

In addition to performing the actual login, the login() method also gives the
user karma if the global karma setting is enabled. It also logs the login in
the userLoginLog database table. This table stores all current login
sessions which are displayed in the WebGUI's Login History administrative
interface.

The default login() method also handles changing the encryption after login
if you are using an SSL certificate, redirects the user to the page he/she
was trying to access when he/she was prompted to log in, and runs any

107

WebGUI Developers Guide

command line script you may have configured to run when a user logs in.

Since WebGUI has global authentication settings, you should handle each
of the above when logging a user in. You can choose to do this yourself if
you override the login method (or choose to bypass it completely), or you
can simply extend the current login method and add your own logic.

As stated earlier, you will almost always extend or override this method as it
doesn't actually authenticate the user. It is your responsibility to decide
how users are authenticated. Many different types of authentication exist.
In WebGUI, you authenticate by matching a username and password MD5
hash combination against what is stored for the user in the authentication
database table (this is discussed later with creating accounts). The LDAP
authentication method looks up the distinguished name for the user in the
authentication database table and attempts to bind to the LDAP server with
that distinguished name.

A convenience method exists in the superclass for very basic
authentication. You may choose to use it or extend it as it does some
standard checks against the user table that you would probably do anyway.

$auth->authenticate($username);

Every user in WebGUI, regardless of the authentication method you are
using, must have an entry in WebGUI's users table. The authenticate
method in the superclass looks up the user by username. If the user does
not exist, an error is set in the object's error data and false is returned. If
the user does exist, but is not active, an error is set in the object's error
data, the login attempt is logged, and false is returned. Finally, if the user
does exist and is active, the user object is created, set for the
authentication session, and true is returned.

Say you wanted to authenticate users via a database; however, you don't
feel the MD5 hashing algorithm is secure enough for your passwords.
Instead, you'd like your passwords hashed by something with a longer key
like SHA512. There are actually two steps to this. The first is the actual
authentication. Later in this chapter, saving the password hash will be
discussed along with creating accounts.

To write the SHA512 password authentication, start by using the
Digest::SHA module that comes with Perl in your authentication plugin.
Then, extend the authenticate method to accept a password in clear text.
You can then SHA512 encrypt the clear text password and compare that to

108

WebGUI Developers Guide

what you have stored in the database. If they match (and you should also
check to make sure that the password entered is not nothing), you will
allow the authentication to continue. If they don't match, you'll set an error
message in the object data and return false to the login method.

sub authenticate {
 #shift the object off the argument stack
 my $self = shift;

#shift the username off the argument stack
 my $username = shift;
 #shift the password off the argument stack
 my $password = shift;

#validate the username using the superclass method
 unless ($self->SUPER::authenticate($username)) {
 #The superclass method will log the error for us, return false
 return 0;
 }
 #SHA-512 hash the password
 my $sha512pw = Digest::SHA::sha512_base64($password);
 #Get a hash reference of all the authentication data for this user
 my $userData = $self->getParams;

#if the password is empty or the current identifier in the data does
 #not match the hashed clear text password, the password is not correct.
 if ($password eq "" || $sha512pw ne $userData->{identifier}) {
 #Return an error to the user
 $self->error("Username/Password combination is not correct");
 #Reset the user object to the visitor since login was unsuccessful
 $self->user(WebGUI::User->new($self->session,1));
 #Return false
 return 0;
 }
 #Username and password combination passed, return true.
 return 1;

}

As usual, start by shifting all of the arguments off the argument stack. In
this case, you are accepting two arguments: username and password. You
then validate the username by calling the superclass authenticate method,
which was discussed earlier. If this fails, simply return false to the login
method as any errors will already be in object data for you to return. If user
authentication passes, you then want to validate that the passwords match.
Start by SHA-512 hashing the clear text password that was passed in by

109

WebGUI Developers Guide

the login method and contains the value that was posted in the password
field. Then, use another superclass API method to retrieve all of the
authentication data for the current user.

$auth->getParams();

This method returns a hash reference containing all of the data from the
authentication table for the current user and authentication plugin. Note
that by validating the username first, you are assured that the current user
is that of the username entered in the form field as it gets reset in the
authenticate method of the superclass. When you call getParams() in your
extension of authenticate, you receive the data from the user attempting to
log in rather than that of the visitor user.

From this hash you retrieve the identifier field from the database which
stores your hashed password. You can then compare that to the hash of
the clear text password that was passed in. If the password is empty or the
hashes don't match, you know that the password entered is incorrect.
Then, set an error message in the object and reset the user in the
authentication session to the visitor object. If you don't do this step, the
user will be logged in even though he wasn't properly authenticated against
the system. You can then return false to the login method which will relay
your error message to the user, as you will see shortly. If the passwords do
match, simply accept the login performed by the superclass method and
return true to the login method.

Now, simply call your authenticate method, pass it the username and
password that were submitted from the displayLogin form, and decide
what to do on a successful and unsuccessful login. In the example, if
authentication is successful, you'll simply let the superclass do the work of
logging the action and getting the user to the right page. If authentication is
unsuccessful, you'll return the user to the displayLogin page and output an
error message.

sub login {
 #Shift the class off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;
 #Get the username from the form post
 my $username = $session->form->process("username");
 #Get the password from the form post
 my $password = $session->form->process("identifier");

110

WebGUI Developers Guide

 #If the username and password combination don't authenticate
 unless($self->authenticate($username,$password)) {
 #Set the http status of the page returned
 $session->http->setStatus("401","Incorrect Credentials");
 #Log a security warning to the error log
 $session->errorHandler->security(

"login to account $username with invalid information."
);

 #Return the displayLogin page and pass it the error for display
 return $self->displayLogin($self->error);
 }
 #Authentication was successful, continue logging in the user
 return $self->SUPER::login();

}

logout()

Now that your users can log in, you should probably give them a way to log
out. Fortunately, this process is so simple it almost never requires
extending the functionality provided by the superclass. In most cases, you
don't need to provide a logout method.

In cases where you do need to add or change the default logout
functionality, it is a good idea to extend the superclass logout method
rather than override it completely as it handles ending the current user's
session, setting the current user to the visitor user, and running any logout
script that might be necessary.

Suppose that you wish to redirect the user to the home page whenever
she/he logs out of the website. To do this, simply extend the functionality of
the logout() method and set the http header to redirect the user to the site
URL after the logout is complete.

sub logout {
 #Shift the object off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;
 #Log the user out with the superclass method
 $self->SUPER::logout();
 #Redirect the user to the homepage of the website
 my $homepage = $session->url->getSiteURL;
 $session->http->setRedirect($homepage);
 #Return the default behavior

111

WebGUI Developers Guide

 return;
}

Authentication Data

Now that your users are able to log in and log out of your site, it's time to
allow user accounts to be created, updated, and deactivated. Before
getting into that, it's important to understand how data related to users,
and authentication in general, is stored in WebGUI.

Settings

Let's start by talking about local and global authentication settings. You've
already seen examples of retrieving local authentication settings in this
chapter using the getSetting() method: $auth->getSetting([$settingName]);

All settings in WebGUI are stored in the settings table which looks like this:

Field Type Null Key

name varchar(255) No PRIMARY

value text Yes

Notice that there is no concept of namespace, which creates a small
problem with authentication in that each plugin can have its own local
settings, but it's not possible to reuse the same setting name as it serves
as the primary key of the table. To overcome this, the getSetting method of
the superclass automatically namespaces your local settings for you by
placing the name of your authentication identifier (which must be unique to
each WebGUI site) in front of the name of the setting passed in, capitalizing
the first letter of the setting name so that it becomes camel cased. Thus,
$auth->getSetting(“ipvisitorId”); for the Yourplugin authentication plugin
returns the setting yourpluginIpvisitorId.

112

 If you do not make the logout method callable, the default templates for the Login
Box and Login Toggle macros, as well as the account options list, will contain links
that will not work properly.

WebGUI Developers Guide

Global authentication settings are returned by calling the get method from
the settings object within the session object.

my $globalSetting = $self->session->setting->get(“encryptLogin”)

Global and local authentication settings are found in the Settings screen of
WebGUI's administrative interface. Global authentication settings are found
on the User tab. Here you'll find settings such as whether or not to allow
Anonymous Registration, what workflow activity to run when a new regular
or admin user is created or updated, whether or not karma is enabled and
how much karma should be given for each login, and so on. WebGUI's
Authentication superclass handles the display and processing of all global
authentication settings, so if you completely override something, it will be
up to you to determine what to do with these settings. You may choose
not to use them at all, but they will not be removed from the user interface,
making it is easy to create something that is confusing to use. For instance,
if you decide to override the login method and completely ignore karma,
the enable karma setting will not work for your plugin regardless of whether
or not it is turned on. You cannot add global authentication settings without
directly modifying the core of WebGUI.

Local authentication settings are found on the Authentication tab of the
Settings screen and are located within the box titled with the name of the
authentication identifier for each plugin. These settings are specific to each
authentication plugin, so anything custom you wish to add is done here.
Recall that previously in the chapter the getSetting method was used to
retrieve the ipvisitorId, allowedIpAddress, and all of the templateIds.

editUserSettingsForm()

To add local settings for your authentication plugin you must override the
editUserSettingsForm() method in the superclass. If you look, this is an
empty method because, by default, WebGUI assumes your authentication
method has no settings. Another important thing to note is that this method
does not need to be callable, as it will never be called directly. Instead, this
method is executed for each of the authentication plugins installed on your
site (to see the executing code, look at
WebGUI::Operation::Settings::www_editSettings()). If you do not override
this method, your auth method will appear on the Authentication tab of the
Settings screen as an empty box.

To override this method, you must create a WebGUI::HTMLForm object and

113

WebGUI Developers Guide

return the printRowsOnly method as the calling function to write the raw
form elements directly to the page. In this example, you'll want to create
settings for the ipvisitorId, allowedIpAddress, and the various templateIds
of the authentication plugin. It is vital that you namespace your settings as
you do not want your form elements to share the same name as other form
elements on the Settings screen. Use the namespace rules described
above to ensure that you will not have naming conflicts, and that your
settings can be retrieved with the getSetting() method mentioned earlier.

sub editUserSettingsForm {
 #shift the object off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;
 #Create the WebGUI::HTMLForm object
 my $f = WebGUI::HTMLForm->new($session);
 #Create the form element for the ipvisitorId setting
 $f->user(

 name => "ipIpvisitorId",
 value => $self->getSetting("ipvisitorId"),
 label => "IP Visitor User",
);
 #Create the form element for the allowedIPAddress setting
 $f->text(

 name => "ipAllowedIPAddress",
 value => $self->getSetting("allowedIPAddress"),

 label => "Allowed IP Address",
);
 #Create the form element for the accountTemplate setting
 $f->template(
 name => "ipAccountTemplateId",
 value => $self->getSetting("accountTemplateId"),
 namespace => "Auth/IP/Account",
 label => "Display Account Template",
);
 #Create the form element for the createAccountTemplate setting

$f->template(
name => "ipCreateAccountTemplateId",
value => $self->getSetting("createAccountTemplateId"),
namespace => "Auth/IP/Create",
label => "Registration Template"

);
 #Create the form element for the loginTemplate setting

114

WebGUI Developers Guide

$f->template(
 name => "ipLoginTemplateId",
 value => $self->getSetting("loginTemplateId"),
 namespace => "Auth/IP/Login",
 label => "IP Login Template"
);
 #Return the raw form rows
 return $f->printRowsOnly;

}

After shifting the object off the argument stack and setting the session
variable, create a new WebGUI::HTMLForm object. Then, start adding
elements of various types to the form. For the ipvisitorId setting, use a
WebGUI::Form::User element. For the allowedIpAddress element, use a
WebGUI::Form::Text element, and for the templates use a
WebGUI::Form::Template element. Also notice that each of the names
follows the namespace rule. The name of the authentication plugin is “IP”,
thus the ipvisitorId field is named “ipIpvisitorId” and so on. You should also
notice that for each of the values you simply use the getSettings method on
the name of the setting as it will be referred to throughout the rest of the
code base. This makes it less confusing to others reading your code and
easier to support for yourself in the future. Finally, return the printRowsOnly
method of the WebGUI::HTMLForm object, which will write your form
directly to the Authentication tab of the Settings screen within the area for
your authentication plugin.

editUserSettingsFormSave()

Now that you've got your form displaying on the Authentication tab of the
Settings screen, you need to ensure that your settings are saved to the
settings table. Do this by overriding the editUserSetttingsFormSave()
method. Once again, this method is empty in the superclass so it is up to
you to save your own settings. Like the editUserSettingsForm() method,
this method does not need to be callable as it is executed for each
authentication plugin installed on your site (see the executing code in
WebGUI::Operation::Settings::www_saveSettings()).

To save settings, process the data from the form post, handle any user
errors that might exist in the data posted, and then use the
WebGUI::Sesssion::Setting API to write your settings to the database. In
this example, you have five fields that are posted via the
editUserSettingsForm() method to handle.

115

WebGUI Developers Guide

sub editUserSettingsFormSave {
#shift the object off the argument stack

 my $self = shift;
 #Create a session variable
 my $session = $self->session;
 #Create a form object variable

my $form = $session->form;
 #Create a setting object variable

my $setting = $session->setting;
 #Create an array for storing errors
 my @errors = ();
 #Get the data from the form post
 my $ipvisitor = $form->process("ipIpvisitorId","user");
 my $allowedIPAddress = $form->process("ipAllowedIPAddress","text");
 my $accountTmplId = $form->process("ipAccountTemplateId","template");
 my $createAcctTmplId

= $form->process("ipCreateAccountTemplateId","template");
 my $loginTemplateId = $form->process("ipLoginTemplateId","template");
 #Write the data to the settings table
 $setting->set("ipIpvisitorId",$ipvisitor);
 $setting->set("ipAllowedIPAddress",$allowedIPAddress);
 $setting->set("ipAccountTemplateId",$accountTmplId);
 $setting->set("ipCreateAccountTemplateId",$createAcctTmplId);
 $setting->set("ipLoginTemplateId",$loginTemplateId);
 #Handle errors
 #Don't allow an IP address to be set if an ipvisitor is not
 if($allowedIPAddress ne "" && $ipvisitor eq "") {
 #Unset the setting. Don't remove it or it will not be able to be set again
 $setting->set("ipAllowedIPAddress","");

#Push a message on to the error stack
 push(@errors,"IP Visitor is empty. Allowed IP Address unset");
 }
 #Return a reference to the error array
 return \@errors;

}

After shifting the object off the argument stack
and setting up some session variables, begin by
processing the form fields from the form post.
You'll notice that in this method you must refer to
the names of the fields that are posted, which
you namespaced in the previous section. Also,

116

For more information
about processing form
posts, see the Form
Controls chapter.

WebGUI Developers Guide

there is no authentication API method for setting data without using the
namespace, so you will simply refer to the full name of the setting
throughout this method. If you prefer, you can refer to the full names of the
settings throughout the application and avoid the getSetting() method all
together, as it is simply a convenience method.

Once you have processed your form variables, write all of the data to the
settings table. You may be wondering why errors weren't processed before
writing the database settings. Because each authentication method
handles writing its own data to the database, you can't stop other data
from being posted. Since other settings are going to be saved regardless of
any errors that happen in your authentication method, it makes sense to
save the settings first and then unset anything that might cause the user
problems. You don't want the entire post to fail if one mistake is made.
Simply protect the user from harm by unsetting anything that could be a
problem, and notify the user that there is an issue with the data submitted.

After writing all of the settings to the database, check for errors. If the user
set an allowed IP address, your authentication method is going to try to
automatically log in users coming from that IP address as the IP Visitor
user. If that user doesn't exist, you have a problem. For that reason, you
cannot allow the Allowed IP Address to be set unless the IP Visitor field is
also set. Do this by updating the setting in the database to an empty string
and pushing an error message onto the error array. It is important not to
use the remove method in the settings API as this will completely remove
the setting row from the database, making the setting impossible to set
again. Finally, return a reference to your error array, which will be reported
to the user by the calling function.

User Data

Now that you have your local authentication settings taken care of, you can
finally allow user accounts to be created, updated, and deactivated. Before
diving into the guts of how to do this, it's important to take a look at user
accounts in WebGUI and where data is stored.

All users in WebGUI, regardless of the authentication method, must have a
WebGUI user account. As you've seen, even visitors who have not
registered for the site have a user account: the visitor account (userId 1).
Every user account in WebGUI is stored in the users table which looks like
this:

117

WebGUI Developers Guide

Field Type Null Key

userId varchar(22) No PRIMARY

username varchar(100) Yes UNIQUE

authMethod varchar(30) No

dateCreated int(11) No

lastUpdated int(11) No

karma int(11) No

status varchar(35) No

referringAffiliat
e

varchar(22) No

friendsGroup varchar(22) No

Notice that it is in this table that you store what authMethod (authentication
identifier) is used by each user. When a user attempts to log in, you look up
the authMethod, create an instance of that method, and call the init
method, as seen earlier.

You'll also notice that you don't store a password in this table. That is
because the password is strictly dependent on the authentication plugin
being used. For instance, the example specifies that passwords be SPA-
512 hashed. If the password field existed in the user table and was of
length just long enough to support MD5 hashed, the field wouldn't be long
enough to hold your password hash. Some authentication methods don't
even use passwords that are stored in WebGUI. The LDAP plugin, for
instance, authenticates the password posted at login against the LDAP
server. The password isn't even stored in WebGUI for that module, so what
use would it be in the users table?

118

WebGUI Developers Guide

Passwords, and other authentication specific user data, are stored in the
authentication table, which looks like this:

Field Type Null Key

userId varchar(22) No PRIMARY

authMethod varchar(30) No PRIMARY

fieldName varchar(128) No PRIMARY

fieldData text No

The composite key of userId, authMethod, and fieldName ensures that no
user can have more than one data entry for a field within any authentication
plugin. It is here that you will store things like each user's password, the
last time the user logged in, whether or not the user is allowed to change
his/her password, the distinguished name of the user on the LDAP server,
and so on.

The authentication superclass contains API methods for retrieving and
manipulating this data. One such method was discussed in the login
section of this chapter.

$auth->getParams

This method retrieves all of the the fieldName and fieldData pairs for a
given user and a given authentication method, returning them as a hash
reference.

$auth->saveParams($userId,$authMethod,$propertiesHashRef)

The saveParams method writes all of the key/value pairs passed in as a
properties hash reference to the authentication table for the userId and
authMethod passed in. The key of the hash is expected to be the
fieldName column, and the value of the hash is expected to be the
fieldData column.

119

WebGUI Developers Guide

$auth->deleteParams()

Typically, an authentication method doesn't handle deleting users, so this
method, along with the following, should almost never be used; however, it
is good to know about them since they do exist and may serve a purpose
in any external applications you may write. This method deletes all
parameters from the authentication table for the user currently stored in
object data. This method can be very dangerous to call as it crosses over
authentication methods, and should only be called when completely
removing a user from WebGUI.

$auth->deleteSingleParam($userId,$authMethod,$fieldName)

This method deletes a single field from the authentication table for the
userId and authMethod passed in. Unlike the authentication settings, it is
okay to remove entire rows of data from the authentication table as they are
re-inserted by the saveParams() method if the user's information is ever
updated.

Finally, it is worth noting one more table where user data is stored, which is
the userProfileData table, a sample of which is displayed below:

Field Type Null Key

userId varchar(22) No PRIMARY

email varchar(255) No

firstName varchar(255) No

middleName varchar(255) No

lastName varchar(255) No

This table is an extension of the users table and stores all of the profile data
related to a user account. It is flexible and may not look the same on any
other WebGUI site, as it can be modified via WebGUI's user profiling
interface (for more on user profiling, see the Users chapter of the WebGUI
Administrators Guide). When creating user accounts, it is sometimes
necessary to collect additional data to be stored in this table.

120

WebGUI Developers Guide

Creating User Accounts

Since each authentication plugin stores different data related to each user,
it is the responsibility of the plugin to provide a way for WebGUI's user
management system to update this data so users can properly authenticate
against the system. Likewise, if you want users to be able to anonymously
create accounts using your authentication plugin, it is important to create a
way for that to happen as well.

There are two methods available for creating user accounts. The first must
always be implemented if you have custom user data that needs to be
stored. The second need only be implemented if you wish to allow users to
create their own accounts. Please note, however, that there is a global
setting for turning anonymous registration on and off, which can lead to
some confusion by those using your plugin.

editUserForm()

To allow custom user data to be updated in WebGUI's user management
system, you need to provide it the necessary form elements. Do this by
overriding the editUserForm() method in the superclass. Again, you will
note that this method is empty in the superclass, implying that it will be
assumed that your custom authentication method has no custom user
data. Also, this method does not need to be callable as it will never be
called directly. Instead, each method is executed for each of the
authentication plugins installed on your site (the executing code can be
found in WebGUI::Operation::User::www_editUser). If you do not override
this method, your auth method will appear on the Account tab of the
Add/Edit User page of WebGUI's User Management system without any
associated form fields.

Like editUserSettingsForm(), override this method by creating a
WebGUI::HTMLForm object and return the printRowsOnly method. In the
example, you'll want to create a form field for your customized password.
It is again vital that you namespace your fields as you do not want the form
elements to share the same name as other form elements on the page.
Use the namespace rules described above to ensure uniqueness.

sub editUserForm {
 #shift the object off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;

121

WebGUI Developers Guide

 #Create the WebGUI::HTMLForm object
 my $f = WebGUI::HTMLForm->new($session);
 #Create the form element for the password field
 $f->password(

 name=>"ipPassword",
 label=>"Password",
 value=>"password"

);
 #Return the raw form rows
 return $f->printRowsOnly;

}

After shifting the object off the argument stack and setting the session
variable, create a new WebGUI::HTMLForm object. Then, add the
password element to the form using the WebGUI::Form::Password form
module. Notice that the name of the password form element follows the
namespace rule.

You might be wondering why the value of password is hard coded to the
string “password”. This is for several reasons. First, the password is stored
as a ISA-512 hash, so it isn't possible to submit the actual clear text value
of the password. Even if you could, you wouldn't want anyone to be able to
view source on the page and see the clear text value for each user's
password. Instead, put some default text in to “trick” the user into thinking
the password is being displayed to avoid an unintentional change. This also
serves you on the form post to ensure that the user has actually changed
the password to something else before you update.

Finally, return the printRowsOnly method of the WebGUI::HTMLForm
object, which will write your form directly to the Add/Edit User screen of
WebGUI's User Management System for your authentication plugin.

editUserFormSave()

Now that you've got your form displaying on the Add/Edit User page of
WebGUI's User Management System, you need to ensure that the data is
saved properly to the authentication table for the correct user. Do this by
extending the editUserFormSave() method in the superclass. The
superclass method expects a hash reference of properties to write to the
authentication table as it simply calls the saveParams() method discussed
earlier in the chapter. Like editUserForm(), this method does not need to be
callable as it is executed for each authentication plugin installed on your

122

WebGUI Developers Guide

site (see the executing code in
WebGUI::Operation::User::www_editUserSave()).

To save settings, process the data from the form post, create the properties
hash reference with any data that needs to be saved, and then call the
superclass method. If you choose to override this method entirely, you
would simply call the saveParams() method rather than calling the
superclass method. In this example, you only have your custom password
field to handle.

sub editUserFormSave {
 #shift the object off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;
 #Create a form object variable

my $form = $session->form;
 #Create an empty properties hash reference
 my $props = {};
 #Get the password from the form post
 my $password = $form->process("ipPassword",”password”);
 #Update the password if it was changed
 if ($password && $password ne "password") {
 $props->{identifier} = Digest::SHA::sha512_base64($password);
 }
 #Call the superclass method with the properties hash ref
 $self->SUPER::editUserFormSave($props);

}

After shifting the object off the argument stack and setting up some
session variables, create an empty hash reference to store your properties
in and then process your password form field. When you processed your
settings fields in the editUserSettingsFormSave() method, you were able to
handle errors and return messages to the user. In this method, you can still
handle errors if you choose to, but you cannot return any messages to the
user. For that reason, it is usually a good idea to simply save the data as
entered by the user. If you absolutely need validation, it is possible to add
client side validation using the WebGUI:HTMLForm API; however, this is not
discussed here.

In the example, you simply check to see if a password has been set by the
user. Some logic is added to assure that the password is not empty and

123

WebGUI Developers Guide

that the password is not the same as the default value, in which case you
are assured that the user has typed something new into this field and you
should change the password. Finally, call the superclass method passing in
the authentication data to be set.

createAccount()

Now that user data can be created and updated through WebGUI's User
Management System, it's time to allow users to create and update their
own accounts. As mentioned earlier, you can choose not to allow this to
happen; however, there are global settings which enable this ability
regardless of what you do. It is usually a good idea to implement these
methods and simply return a page stating that the action is not possible
with the authentication plugin being used.

The createAccount method is similar to the displayLogin method in that it is
almost always called as the visitor user. In order to use the createAccount
method for your authentication plugin, you must set it to be the default
plugin for the WebGUI site.

If you use the default WebGUI authentication plugin and turn on
anonymous registration in the user settings, you will see a “click here to
register” link on the default WebGUI login template when you are logged
out. Clicking this link brings you to this method which allows you to create
your own account for logging in.

This method is really a convenience method which returns a template
containing the core form elements that are used for creating a new
account. Typically, you will not want to override this method. Instead, you
will want to extend it with some options that are available from the
superclass.

$auth->createAccount([postMethod, templateVariables])

“postMethod” is a string which indicates which callable method should be
posted to when the user posts the create account form. By default,
postMethod is set to “createAccountSave”, a method covered in the next
section. If you choose to pass in your own postMethod, the form will be
generated so that when the user fills in the account creation form, it will
post to whichever method you specify. Keep in mind that this method must
be listed in your callable methods. For example,
$auth>displayLogin('doCreateAccount') will attempt to post to the

124

WebGUI Developers Guide

doCreateAccount method of your custom authentication plugin.

“templateVariables” is a hash reference containing template variables that
you can create in your extension of createAccount that will be exported to
the template. By default, the following template variables are available from
the createAccount superclass method:

Variable Description

title Internationalized title of the login
page.

create.form.header <form> open tag containing action
and method and hidden fields which
specify which page to post to.

create.form.profile Template loop containing all of the
profile fields to display on the page.

profile.formElement Loop field within create.form.profile
which contains the form element.

profile.formElement.label Loop field within create.form.profile
which contains the internationalized
label for the form element.

profile.requied Loop field within create.form.profile
which determines whether or not the
form field is required for submission.

create.form.profile.<id>.formElement Individual profile element that can be
used outside the form loop where
<id> represents the name of the field
you wish to access.

create.form.profile.<id>.formElement.label Individual profile element label that
can be used outside the form loop
where <id> represents the name of
the field you wish to access.

create.form.profile.<id>.required Individual element that determines
whether or not the form field
represented by <id> is required or
not.

125

WebGUI Developers Guide

create.form.submit Submit button for posting the
account creation form.

create.form.footer </form> closing tag

login.url URL which calls the init method of
the default authentication plugin.

login.label Internationalized text for the login.url
field.

You will notice the profile form element loop and single access variables
among the template variables. WebGUI allows users to create custom
profile fields and determine whether or not those, or any of the default
profile fields that come standard, should be displayed or required at login.
These loops export that data to the template for display. If you choose to
override this method completely, it will be your responsibility to make sure
that this works properly.

You extend the template by passing in a hash reference of your own
custom template variables that will be used on your create account page.
Notice that these template variables do not have a place to enter a
username and password since you may require neither for creating an
account (you might pull username directly out of an LDAP by asking a user
to enter some other information). In order to get those items into your
template, you'll need to pass them along as a hash reference to the
createAccount superclass method. It is important to note that you cannot
change the template variables in the superclass. If you ever want to change
something in the superclass variables, you will need to create entirely new
template variables and use those instead. You could also choose to
override the createAccount method completely and make it do whatever
you need it to do.

Extend the createAccount method and add the username and password
fields. In addition, ask the user for a password confirmation to validate that
the password was entered correctly. Also, if the user is already logged in,
you would rather not display this page. Instead, bounce the user to the
displayAccount page, which is discussed a bit later. Also, check to make
sure that the anonymous registration field is turned on before allowing
access to the page. Finally, add an error message that you can display to
the user in the case registration fails for some reason.

126

WebGUI Developers Guide

sub createAccount {
 #shift the object off the argument stack
 my $self = shift;
 #shift off any message that we might have passed in from a failed login
 my $message = shift;
 #Create a session variable
 my $session = $self->session;
 #Create a form object variable
 my $form = $session->form;
 #Create a setting object variable
 my $setting = $session->setting;
 #Create an empty hash ref to use for our template variables
 my $vars = {};
 #Return the display account page if the user is already logged in
 if($self->userId ne "1" && $self->userId ne $self->getSetting("ipvisitorId")) {
 return $self->displayAccount($message);

}
 #Otherwise, if anonymous registration is not enabled, return the login page
 elsif (!$setting->get("anonymousRegistration")) {
 return $self->displayLogin;
 }
 #Add some template variables to the empty hash we created

#Return any error messages passed in to the page
 $vars->{'create.message'} = $message if ($message);

#Create a field for displaying the username
 $vars->{'form.username' } = WebGUI::Form::text($session, {
 name => "username",
 value => $form->process("username"),
 });
 #Create a label field for the username
 $vars->{'form.username.label' } = "Username";
 #Create a field for displaying the password
 $vars->{'form.password' } = WebGUI::Form::password($session, {
 name => "password"
 });
 #Create a label field for the password
 $vars->{'form.password.label' } = "Password";
 #Create a field for displaying the password confirmation
 $vars->{'form.passConfirm' } = WebGUI::Form::password($session, {
 name => "passwordConfirm"
 });
 #Create a label field for the password confirmation
 $vars->{'form.passConfirm.label'} = "Password Confirm";

127

WebGUI Developers Guide

 return $self->SUPER::createAccount("createAccountSave",$vars);
}

Start out by shifting the session object off the argument stack as you
usually do. Then, also shift a message off. Set up some session variables to
use through the code and create an empty hash reference to store your
template variables. Now, check the userId for the authentication session. If
the userId is not “1”, which is the userId of the visitor, and the userId is not
that of the ipvisitor (ipvisitors should also be able to create new accounts),
that means that the user is already logged in. You don't want users who are
already logged in to be able to create new accounts, so show them the
displayAccount form instead and pass it any message that might be
forwarded. Otherwise, if the anonymous
authentication flag is turned off, visitors
shouldn't be able to create their own
accounts. If this happens, bounce the user to
the displayLogin page. If this is the visitor or
ipvisitor user, then you will create your
custom template variables and pass them to
the superclass method.

createAccountSave()

Now that there is a form available for users to create new accounts, you
have to make sure it can be submitted and have the account successfully
created. The createAccountSave superclass method handles storing most
of the data, but leaves all of the validation up to you. For this reason you
will nearly always want to extend or override this method. If you decide to
override the method, the createAccountSave method handles:

● creating the new user account

● assigning karma if karma is enabled

● saving all of the profile fields created in the createAccount()
superclass method

● saving all the authentication user data

● sending a welcome message if a properly namespaced
sendWelcomeMessage field exists for your authentication plugin

128

If you do not make the
createAccount method
callable, the default
template for the Login Box
macro will contain links
that will not work properly.

WebGUI Developers Guide

● logging in the user

● logging the login

● running any scripts configured to run on registration

● redirecting the user to the page he/she was trying to access when
he/she created the account

● and logging the user's registration if the user was invited to join the
site.

As you can see, there is a lot to handle, so you will want to extend this
method rather than completely override it. You extend the method by
passing it the username of the user creating the account, a properties file
containing the authentication user data to write to the authentication table,
the password of the user creating the account (password is only used to
send to the user in the welcome message. If you do not use a password in
your authentication scheme, you do not need to pass it in.), and a validated
profile data hash, which you will see how to provide shortly.

All validating must be done in in this method. In the example you will need
to validate once again that anonymous registration is enabled, that the
username entered conforms to WebGUI's username standards, that the
password entered matches the confirm password field, and that all of the
required profile fields have been filled in.

Once you complete validation, you hand the superclass the data it needs
and let it create the user and log him/her in.

sub createAccountSave {
 #shift the object off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;
 #Create a form object variable
 my $form = $session->form;
 #Create a setting object variable
 my $setting = $session->setting;
 #Return the display account page if the user is already logged in
 if($self->userId ne "1" && $self->userId ne $self->getSetting("ipvisitorId")) {
 return $self->displayAccount;

}
 #Otherwise, if anonymous registration is not enabled, return the login page

129

WebGUI Developers Guide

 elsif (!$setting->get("anonymousRegistration")) {
 #Log a security warning to ourselves that someone tried to hack a login
 $session->errorHandler->security("Registration hack attempted!");
 return $self->displayLogin;
 }
 #Process our form fields from createAccount()
 my $username = $form->process('username',"text");
 my $password = $form->process('password',"password");
 my $passConfirm = $form->process('passwordConfirm',"password");
 #Use the Profile API to validate the profile data
 my ($profile, $error)

= WebGUI::Operation::Profile::validateProfileData($session, {
 regOnly => 1
 }
);
 #Validate the username
 unless ($self->validUsername($username)) {
 $error .= $self->error;
 }
 #Validate that a password was entered
 if($password eq "") {
 $error .= "Password cannot be empty";
 }
 #Validate that the password matches the confirmation
 unless ($password eq $passConfirm) {
 $error .= "Password does not match confirmation";
 }
 #Return the user to the create account page if an error happened
 unless ($error eq "") {
 return $self->createAccount($error);
 }
 #Set the user data properties
 my $props = {};
 $props->{ identifier } = Digest::SHA::sha512_base64($password);

return $self->SUPER::createAccountSave(
$username,
$props,
$password,
$profile

);
}

130

WebGUI Developers Guide

Start out by shifting the session object off the argument stack as you
usually do. Then, set up some session variables to use through the code.
Now, check the userId for the authentication session. If the userId is not
“1”, which is the userId of the visitor, and the userId is not that of the
ipvisitor (ipvisitors should also be able to create new accounts), that means
that the user is already logged in. You don't want users who are already
logged in to be able to create new accounts, so you'll show them the
displayAccount form instead. Otherwise, if the anonymous authentication
flag is turned off, and someone tries to post to this form, he is trying to
hack your site. If this happens, you will log a security message for yourself
and bounce the user to the displayLogin page.

Now, process the form fields that you created in createAccount() for error
handling. Use the validateProfileData method of the
WebGUI::Operation::Profile API, which will loop through all of the profile
fields that are flagged for display on registration, determine whether or not
the required fields are filled in, and pass back a hash containing the profile
fields to store in the database as well as any errors that may have occurred.

Once you do this, validate the username. There is a convenience method
available in the superclass to check the validity of the username supplied
as certain rules need to be enforced when creating usernames in WebGUI.

$auth->validUsername($username);

This method security checks the username to make sure that macros are
not used, that the username is not a duplicate, that it is not empty, and that
it does not contain whitespace at the beginning or end. Any errors are
logged in object data and can be retrieved with the error() method.

Finally, validate that the password is not empty and that it matches the
password confirmation posted. If any errors occurred in your validation, you
return the user to the createAccount method and pass it the errors so they
can be displayed.

If all of the data is valid, set a properties hash containing the SHA-512
hashed password and call the superclass method to pass it the appropriate
data. This will successfully create the account and log the user in for the
first time.

131

WebGUI Developers Guide

displayAccount()

Once the user is logged in, it is sometimes important that he/she is able to
update the authentication information. Do this by overriding or extending
the displayAccount method in the superclass. This method is truly a
convenience method as it simply sets up some template variables you
would otherwise declare yourself. By default, nothing is posted on the
displayAccount method, so unlike some of the other methods you've seen,
a default post method is not provided and you will have to create your own
callable method for posting to should you choose to extend this method.

To extend the method, if you so choose, you will call it with some options
that you have seen before.

$auth->displayAccount(postMethod,[templateVariables])

“postMethod” is a string which indicates which callable method should be
posted to when the user makes a request. Unlike other similar superclass
methods, postMethod is required to extend this. Keep in mind that
whatever method you choose here must be listed in your callable methods.
For example, $auth->displayAccount('displayAccountSave') attempts to
post to the displayAccountSave method of your custom authentication
plugin.

“templateVariables” is a hash reference containing template variables that
you can create in your extension of displayAccount that will be exported to
the template. By default, the following template variables are available from
the displayAccount superclass method:

Variable Description

title The internationalized title of the account
page.

account.form.header <form> open tag containing action and
method and hidden fields which specify to
which page to post.

account.form.karma Amount of karma current user has
amassed.

account.form.karma.label The internationalized title for users karma.

132

WebGUI Developers Guide

account.form.submit Submit button for posting account
information.

account.form.footer </form> closing tag

account.options Form loop containing the different display
options that are available based on the
user's privileges.

options.display Loop field within account.options which
outputs a link to various user account
pages within WebGUI.

You extend the template by passing in a hash reference of your own
custom template variables that will be used on your display account page.
Notice that these template variables do not have any form fields. In order to
get the authentication data you would like updated into your template,
you'll need to pass them along as a hash reference to the displayAccount
superclass method. It is important to note that you cannot change the
template variables in the superclass. If you ever need to change something
that is in the superclass, you will either need to create entirely new template
variables and use those, or override the displayAccount method
completely. For this method, either option would be fine.

Let's extend the displayAccount method and allow users to change their
passwords. In addition, let's also ask the user to confirm the password to
validate that the password was entered correctly. Also, if the user is not
logged in, display the displayLogin page instead.

sub displayAccount {
#shift the object off the argument stack

 my $self = shift;
 #shift off any message that we might have passed in from a failed update
 my $message = shift;
 #Create a session variable
 my $session = $self->session;
 #Create an empty has to use for our template variables
 my $vars = {};
 #If the user is not logged in, return the displayLogin page
 if($self->userId eq "1" || $self->userId eq $self->getSetting("ipvisitorId")) {
 return $self->displayLogin;
 }

133

WebGUI Developers Guide

 #Create template varibales
 #Output any message that might have been passed in
 $vars->{'account.message' } = $message if ($message);
 #Create the password field and label
 $vars->{'form.password' } = WebGUI::Form::password($session,{
 name => "password",
 value =>"password"
 });
 $vars->{'form.password.label'} = "Password";
 #Create the password confirm field and label
 $vars->{'form.passwordConfirm'} = WebGUI::Form::password($session,{
 name => "passwordConfirm",
 value => "password"
 });
 $vars->{'form.passwordConfirm.label'} = "Confirm Password";
 return $self->SUPER::displayAccount("displayAccountSave",$vars);

}

Start out by shifting the session object off the argument stack as you
usually do. Then, shift any message off that may have been passed in.
Next, set up a session variable to use
throughout the code and create an empty
hash reference to store your template
variables. Now, check the userId for the
authentication session. If the userId is “1”,
which is the userId of the visitor or that of the
ipvisitor (ipvisitors should not be able to
update the ipvisitor account), show the user
the displayLogin page. If this is a valid
registered user, create your template variables for password and password
confirm and pass them to the superclass method.

As mentioned earlier, you also need to create a custom post method to
save the account information, which in this case is simply an updated
password. Do this by adding a displayAccountSave method to your
authentication plugin.

sub displayAccountSave {
 #shift the object off the argument stack
 my $self = shift;
 #Create a session variable
 my $session = $self->session;

134

If you do not make the
displayAccount method
callable, the default
template for the Login Box
macro will contain links
that will not work properly.

WebGUI Developers Guide

 #Create a form object variable
my $form = $session->form;

 #If the user is not logged in, return the displayLogin page
 if($self->userId eq "1" || $self->userId eq $self->getSetting("ipvisitorId")) {
 return $self->displayLogin;
 }
 #Get the password data from the form post
 my $password = $form->process('password');
 my $passConfirm = $form->process('passwordConfirm');

#Create an empty error message
 my $error = "";
 #Check to make sure the password is valid
 if($password eq "") {
 $error = "Password cannot be empty";
 }
 elsif($password ne "password" && $password ne $passConfirm) {
 $error = "Password does not match confirmation";
 }
 #If there are no errors and the password was changed, update the password
 if ($error eq "" && $password ne "password") {
 #Save the new password
 my $props = {};
 $props->{identifier} = Digest::SHA::sha512_base64($password);
 $self->saveParams($self->userId,$self->authMethod,$props);
 }
 #Set a message to return to the user
 my $display = $error || "Account updated!";
 #Return the display account page
 return $self->displayAccount($display);

}

Start out by shifting the session object off the argument stack as you
usually do. Then, set up some session variables to use through the code.
Now, check the userId for the authentication session. If the userId is “1”,
which is the userId of the visitor or that of the ipvisitor (ipvisitors should not
be able to update the ipvisitor account), show the user the displayLogin
page, as neither of these users should be able to update this account.
Next, retrieve password data from the form post and validate that it is not
empty and that it matches the password confirm field. If no errors are found
and the password was changed (not equal to the default value of
“password”), hash the password and save it in the authentication table.
Finally, return the user to the displayAccount page with either an error

135

WebGUI Developers Guide

message or a message letting him/her know that the account was updated.

deactivateAccount()

WebGUI's authentication API also gives you the ability to let users
deactivate their own accounts. While not a necessary feature, this again is
a global authentication setting, so at the very least you should override the
method and let users know they aren't allowed to self-deactivate.

This method is a convenience method which returns a template containing
the core form elements that are used for deactivating accounts. Unlike
other methods that are similar to this, the templateId for this method is
hardcoded, so if you want to use your own template you will need to
completely override the method.

$auth->deactivateAccount([postMethod])

“postMethod” is a string which indicates which callable method should be
posted to when the user posts the create account form. A default post
method is not provided by the superclass even though the superclass
contains a “deactivateAccountConfirm” method, which is covered in the
next section. If you choose to extend this method, you can either pass the
deactivateAccountConfirm, which allows you to let the superclass handle,
extend yourself, or override. Or, you can pass your own method, in which
case the form will be generated so that when the user fills in the account
creation form it will post to whichever method you specify. Keep in mind
that this method must be listed in your callable methods. For example,
$auth->deactivateAccount('deactivateUser') attempts to post to the
deactivateUser method of your custom authentication plugin.

Because you cannot pass your own template variables to the method, the
template is not extendable. The only reason you would ever extend this
method would be to add additional functionality not handled by the
superclass. If you do choose to override this method, the superclass
method simply checks to make sure the user attempting to use the feature
is valid (you cannot deactivate the visitor or admin account) and that the
setting to allow users to self-deactivate is enabled.

Let's extend the template and ensure that the IP Visitor account, as well as
the regular visitor account, cannot be self-deactivated. If either of these
users attempts to deactivate their accounts, you'll return the displayLogin
page.

136

WebGUI Developers Guide

sub deactivateAccount {
 #shift the object off the argument stack
 my $self = shift;
 #If the user is not logged in, return the displayLogin page
 if($self->userId eq "1" || $self->userId eq $self->getSetting("ipvisitorId")) {
 return $self->displayLogin;
 }
 #Return the superclass deactivateAccount method
 return $self->SUPER::deactivateAccount("deactivateAccountConfirm");

}

Start out by shifting the session object off the argument stack as you
usually do. Then, check the userId for the authentication session. If the
userId is “1”, which is the userId of the visitor or
that of the ipvisitor (ipvisitors should not be
able to deactivate the ipvisitor account), show
the user the displayLogin page. If this is a
valid registered user, allow the superclass to
do the rest of the work.

deactivateAccountConfirm()

As with the deactivateAccount method, the deactivateAccountConfirm()
method of the superclass handles most of what you will need to do when
deactivating WebGUI accounts. You can choose to override this method
completely, but more than likely you'll just need to extend it to add
functionality specific to your authentication plugin.

If you do choose to override this method, it simply checks to make sure the
user attempting to deactivate the account is not the visitor or the admin,
sets the user's account status to “Selfdestructed”, and logs the user out by
calling the logout method. It's important to note that if you choose to
implement the deactivateAccountConfirm method, that you also have
implemented the logout method, otherwise your user will be presented with
an error.

Extend the deactivateAccountConfirm method to ensure that the IP Visitor
user account cannot be deactivated.

sub deactivateAccountConfirm {
 #shift the object off the argument stack
 my $self = shift;

137

If you do not make the
deactivateAccount method
callable, the default
template for the account
options list will contain
links that will not work
properly.

WebGUI Developers Guide

 #If the user is not logged in, return the displayLogin page
 if($self->userId eq "1" || $self->userId eq $self->getSetting("ipvisitorId")) {
 return $self->displayLogin;
 }
 #Return the superclass method
 return $self->SUPER::deactivateAccountConfirm;

}

After shifting the session object off the argument stack, check the userId
for the authentication session. If the userId is “1”, which is the userId of the
visitor or that of the ipvisitor (ipvisitors should not be able to deactivate the
ipvisitor account), show the user the displayLogin page. If this is a valid
registered user, allow the superclass to do the rest of the work.

Creating Custom Methods

As shown in the displayAccount section, sometimes you want to create
your own custom authentication methods. WebGUI's authentication plugin
system is completely extensible, meaning you are not tied down to the
methods talked about here so far. In fact, you could go as far as to use only
the init() method, and implement your own custom solution.

Typically, however, you will want to use many of the convenience methods
available and simply add the extra ones you need. Earlier in the chapter a
URL was created which linked to a recoverPassword method. There is no
superclass definition for such a method, but it is completely within your
power to create one.

To add a custom method to your authentication plugin, simply update the
callable stack to add the “recoverPassword” method, and then create the
subroutine to do what you define. This example outputs some text which
allows the user to send someone on Plain Black's staff an email, but you
can imagine what you could do.

sub recoverPassword {
 #shift the object off the argument stack
 my $self = shift;
 #If the user is logged, return the displayAccount page
 if($self->userId ne "1" && $self->userId ne $self->getSetting("ipvisitorId")) {
 return $self->displayAccount;
 }
 #Return a message to the user with instructions for recovering their password

138

WebGUI Developers Guide

 my $message = q|
 To recover your password, please send an email to

 passwordrecovery@plainblack.com
 .
 Someone from our staff will send you your new
 password within 24 hours.
 |;
 return $message

}

Extending Existing Authentication Plugins

Many times you don't need to write a whole new authentication plugin.
Sometimes one of the default plugins that comes with WebGUI, or one of
the plugins you've created yourself, does almost everything you need, but
simply requires a small tweak here or there. In those cases, you can simply
extend those plugins directly, instead of WebGUI::Auth, by changing the
inheritance statement from use base 'WebGUI::Auth' to use base
'WebGUI::Auth::plugin'.

There are a few caveats to watch out for when doing this. First, remember
that all local settings are namespaced according to the name of your
plugin. If the calling method uses namespaced settings, you will need to
make sure you provide database entries and forms for creating those
settings, otherwise you will be stuck with a situation where the superclass
is looking for a property that doesn't exist.

Another thing to remember is that the form elements in the editUser and
editUserSettings forms all live on the same page. If you plan to run both
authentication plugins in the same WebGUI instance, it is vital to override
those methods (you can typically copy them exactly) and change the
names of the form elements. If you don't do that, you'll wind up with two or
more form elements with the same name on the page, and your
authentication settings won't be updated properly.

Finally, remember that any time you call the superclass you are not calling
the method from WebGUI::Auth (unless the method you are calling is not
implemented), but rather the plugin you inherited from. It's easy to get hung
up trying to debug an error in the wrong place.

Follow these guidelines and it should be smooth sailing when you write
authentication plugins.

139

WebGUI Developers Guide

Installing Your Authentication Plugin

Now that you know how to write an authentication plugin for WebGUI, you
need to know how to install it into the system. While authentication plugins
typically don't require their own tables, they do require settings fields to be
created, otherwise the state will never hold in the database as the settings
API won't save to a field that doesn't exist. Additionally, authentication
plugins require templates and need to be added to the config file. You can
accomplish this all manually, but it is generally better practice to create an
installer and uninstaller for your plugin. How to do each is covered in this
section so you have a complete understanding of the integration points and
how to create install and uninstall scripts for your plugins.

Manually Installing Your Authentication Plugin

Manually installing an authentication plugin requires five steps:

1. Copy your auth method into the proper folder.

2. Insert any custom settings into the database.

3. Create any template assets associated with your
authentication plugin.

4. Add the authentication plugin to WebGUI's configuration file.

5. Configure the authentication settings.

Authentication plugins must be located in /data/WebGUI/lib/WebGUI/Auth/.
Ensure that your plugin is copied here before you continue the installation.

For each of the custom settings that you have defined, you will need to
create a row in the settings table with some sort of default data. When
manually installing, you can leave these as NULL fields and configure the
authentication settings via WebGUI's administrative interface. From a
MYSQL prompt for the database for the site you are adding your
authentication plugin to, type a series of insert statements that look as
follows:

insert into settings (name, value) values ('settingName','settingValue');

Create your template assets by navigating to the import node and creating
a new folder somewhere within. From here you will create templates with

140

WebGUI Developers Guide

the proper namespaces using WebGUI's administrative interface. For more
information on how to create templates in WebGUI, see the WebGUI
Designers Guide.

You'll need to edit the WebGUI configuration file for the site in which you'd
like to install the plugin, and add the identifier of your plugin to the
authMethods key.

“authMethods” : [“LDAP”,”WebGUI”,”Yourplugin”]

The plugin identifier is the name of your Perl module with the “.pm”. If your
module is called IP.pm, then the identifier for your module should be “IP”
and so on. Be sure to restart mod_Perl once you have saved the
configuration file.

Once you have the configuration file changed properly, your authentication
method should be installed. Because this is a manual install, it is important
to go to the WebGUI settings in the administrative interface and properly
configure the settings for the authentication plugin, otherwise you could
have null pointers for templates and other things for which you expect to
have data.

Automating Your Authentication Plugin Installation

In reality, if you plan for anyone else to use your authentication method, you
are going to need to provide an easy way to install your authentication
method. Likewise, if you create this method and then want to install it
somewhere else six months later, you will probably forget to do something
and it will take extra time to run your installation. For this reason, it's
important to create an installer for your authentication plugin that does all
of the steps above with just a few easy keystrokes, and as you will see,
gives you the power to do even more if you choose.

By creating an installer, you can cut the five steps involved in manually
installing your plugin down to a two step process:

1. Copy your auth method into the proper folder.

2. Run the installation script for the authentication method.

Likewise, you can create an uninstaller that will reverse all of the manual
steps if you ever want to remove your authentication method.

141

WebGUI Developers Guide

The install and uninstall scripts should be included at the bottom of your
authentication method and should be exported so they can be called on
the command line:

use base 'Exporter';
our @EXPORT = qw(install uninstall);
use WebGUI::Session;

This will allow users to call your install and uninstall methods from
/data/WebGUI/lib/ as follows:

Perl -MWebGUI::Auth::Myplugin -e install www.mysite.com.conf
Perl -MWebGUI::Auth::Myplugin -e uninstall www.mysite.com.conf

Next, create your install method, which is going to relieve most of the
tedium involved with the manual install. It will add your authentication
plugin to WebGUI's configuration file, it will create your local authentication
settings in the database and set some initial values, it will create a folder in
the import node in which to store your templates, and then it will proceed
to add all of your default templates and commit them.

One other thing that you can do in your install script that you had to do
manually (and very well may forget the next time you try to install your
authentication plugin) is to create your ipvisitor user so you can set it in
your authentication settings, assuring you won't have to remember how or
why you do this.

As you can see, all of the guess work has been taken out of the installation.
All you need to do now is distribute the file along with very simple
instructions for putting the file in the correct folder and running your install
script.

sub install {
#First argument on the command line is the config file

 my $config = $ARGV[0];
 #Second argument on the command line is WebGUI's home dir
 #If no second argument exists, use the default home dir

my $home = $ARGV[1] || "/data/WebGUI";
 #Die if either $home or $config is empty
 unless ($home && $config) {

die "usage: Perl -MWebGUI::Auth::IP -e install www.example.com.conf\n";
}

142

WebGUI Developers Guide

 #Print out a status message to indicate the install is starting
 print "Installing asset.\n";
 #Open a new WebGUI session for the config file passed in

my $session = WebGUI::Session->open($home, $config);
 #Add the authentication method to the config file

$session->config->addToArray("authMethods","IP");
 #Create the ipvisitor user
 my $ipvisitor = WebGUI::User->new($session,"new");

my $ipvisitorId = $ipvisitor->userId;
$ipvisitor->username("ipvisitor");
$ipvisitor->authMethod("IP");

 #Create the local settings
$session->setting->add("ipIpvisitorId",$ipvisitorId);

 $session->setting->add("ipAllowedIPAddress","");
 $session->setting->add("ipAccountTemplateId","IPtmpl0000000000000001");
 $session->setting-
>add("ipCreateAccountTemplateId","IPtmpl0000000000000002");
 $session->setting->add("ipLoginTemplateId","IPtmpl0000000000000003");
 # Create a folder asset to store the default template

Get the import node
my $importNode = WebGUI::Asset->getImportNode($session);
#Add the folder
my $newFolder = $importNode->addChild({

className=>"WebGUI::Asset::Wobject::Folder",
title => "IP Auth Templates",
menuTitle => "IP Auth Templates",
url=> "ip_auth_folder",
groupIdView=>"3"

},"IPAuthFolder0000000001");
 #Create the templates

#Account Template Code
 my $accountTmpl = q|
 <h2><tmpl_var title></h2>
 <tmpl_if account.message>

 <tmpl_var account.message>
 </tmpl_if>
 <tmpl_var account.form.header>
 <table>
 <tmpl_if account.form.karma>
 <tr>

 <td class="formDescription" valign="top">
 <tmpl_var account.form.karma.label>
 </td>

143

WebGUI Developers Guide

 <td class="tableData">
 <tmpl_var account.form.karma>
 </td>
 </tr>
 </tmpl_if>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var form.password.label>
 </td>
 <td class="tableData">
 <tmpl_var form.password>
 </td>
 </tr>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var form.passwordConfirm.label>
 </td>
 <td class="tableData">
 <tmpl_var form.passwordConfirm>
 </td>
 </tr>
 <tr>
 <td class="formDescription" valign="top"></td>
 <td class="tableData">
 <tmpl_var account.form.submit>
 </td>
 </tr>
 </table>
 <tmpl_var account.form.footer>

 <div class="accountOptions">

 <tmpl_loop account.options>
 <tmpl_var options.display>
 </tmpl_loop>

 </div>
 |;
 #Create Account Template Code
 my $createAcctTmpl = q|
 <h2><tmpl_var title></h2>
 <tmpl_if create.message><tmpl_var create.message></tmpl_if>
 <tmpl_var create.form.header>

144

WebGUI Developers Guide

 <table>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var form.username.label>
 </td>
 <td class="tableData">
 <tmpl_var form.username>
 </td>
 </tr>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var form.password.label>
 </td>
 <td class="tableData">
 <tmpl_var form.password>
 </td>
 </tr>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var form.passConfirm.label>
 </td>
 <td class="tableData">
 <tmpl_var form.passConfirm>
 </td>
 </tr>
 <tmpl_loop create.form.profile>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var profile.formElement.label>
 </td>
 <td class="tableData">
 <tmpl_var profile.formElement>
 </td>
 </tr>
 </tmpl_loop>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td class="submitData" colspan="2">

<tmpl_var create.form.submit>
</td>

 </tr>

145

WebGUI Developers Guide

 </table>
 <tmpl_var create.form.footer>
 |;
 #Login Template Code
 my $loginTmpl = q|
 <h2><tmpl_var title></h2>
 <tmpl_if login.message>
 <tmpl_var login.message>
 </tmpl_if>
 <tmpl_var login.form.header>
 <tmpl_var login.form.hidden>

<table >
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var login.form.username.label>
 </td>
 <td class="tableData">
 <tmpl_var login.form.username>
 </td>
 </tr>
 <tr>
 <td class="formDescription" valign="top">
 <tmpl_var login.form.password.label>
 </td>
 <td class="tableData">
 <tmpl_var login.form.password>
 </td>
 </tr>
 <tr>
 <td class="formDescription" valign="top"></td>
 <td class="tableData">
 <tmpl_var login.form.submit>
 </td>
 </tr>
 </table>
 <tmpl_var login.form.footer>

 <div class="accountOptions">

 <a href="<tmpl_var recoverPassword.url>">
 <tmpl_var recoverPassword.label>

146

WebGUI Developers Guide

 <tmpl_if anonymousRegistration.isAllowed>

 <a href="<tmpl_var createAccount.url>">
 <tmpl_var createAccount.label>

 </tmpl_if>

 </div>
 |;
 #Add the templates to the folder
 $newFolder->addChild({
 className =>"WebGUI::Asset::Template",
 ownerUserId =>'3',
 groupIdView =>'7',
 groupIdEdit =>'12',
 title =>"IP Auth Account Template",
 menuTitle =>"IP Auth Account Template",
 url =>"ip_auth_account",
 namespace =>"Auth/IP/Account",
 template =>$accountTmpl,
 }, 'IPtmpl0000000000000001'
);
 $newFolder->addChild({

className =>"WebGUI::Asset::Template",
ownerUserId =>'3',
groupIdView=>'7',
groupIdEdit =>'12',
title =>"IP Auth Create Account",
menuTitle =>"IP Auth Create Account",
url =>"ip_auth_create",
namespace =>"Auth/IP/Create",
template =>$createAcctTmpl,
},'IPtmpl0000000000000002'

);

 $newFolder->addChild({
 className=>"WebGUI::Asset::Template",

ownerUserId=>'3',
groupIdView=>'7',
groupIdEdit=>'12',
title=>"IP Auth Login",

147

WebGUI Developers Guide

menuTitle=>"IP Auth Login",
url=>"ip_auth_login",
namespace=>"Auth/IP/Login",
template=>$loginTmpl,
},'IPtmpl0000000000000003'

);
 #Commit the version tag
 my $workingVersionId = WebGUI::VersionTag->getWorking($session)->getId;

my $tag = WebGUI::VersionTag->new($session,$workingVersionId);
 if (defined $tag) {

print "Committing tag\n";
$tag->set({comments=>"IP Auth Install"});

 $tag->requestCommit;
}

 #Close the WebGUI Session and finish
$session->var->end;
$session->close;
print "Done. Please restart Apache.\n";

}

Begin by accepting the config file and home directory as arguments from
the command line. If no home directory is supplied, assume it's the default
home directory for a WebGUI install. Then, create a WebGUI session using
the WebGUI::Session API. Once you have a WebGUI session open, you can
start using all of the WebGUI API's to install your authentication plugin. Use
the WebGUI::Session::Config API to add your plugin to the config file. Then,
use the WebGUI::User API to create your IP Visitor User. You then use the
WebGUI::Session::Setting API to add your local authentication settings to
the database with default values including the userId of the IP Visitor User
you just created.

Next, get the import node with the WebGUI::Asset API and add a folder to
it by calling the addChild method. Proceed to add the templates to the
folder in this same manner.

Finally, get the current working version tag and commit it so your templates
are fully installed and ready for use. Close the session, and return a
message to the user letting him/her know that he/she should restart
Apache as you have updated WebGUI's configuration file.

Now that you have an automated installation method, you should also
automate uninstalling your authentication plugin. The steps needed include:

148

WebGUI Developers Guide

1. Remove all your custom settings from the database.

2. Remove all your templates from the system.

3. Remove the folder you created from the system.

4. Remove your plugin from the configuration file.

5. Remove the ipvisitor user.

6. Handle all of the users that are currently using your IP auth
module

To do all of this manually could be quite a lengthy job if you had thousands
of users on your site using the IP method. However, you can automate all of
this, and add a command line script similar to your installation file.

sub uninstall {
#First argument on the command line is the config file

 my $config = $ARGV[0];
 #Second argument on the command line is WebGUI's home dir
 #If no second argument exists, use the default home dir

my $home = $ARGV[1] || "/data/WebGUI";
 #Die if either $home or $config is empty
 unless ($home && $config) {

die "usage: Perl -MWebGUI::Auth::IP -e uninstall www.example.com.conf\n";
}

 #Print out a status message to indicate the uninstall is starting
 print "Uninstalling asset.\n";
 #Open a new WebGUI session for the config file passed in

my $session = WebGUI::Session->open($home, $config);
 #Remove the authentication method from the config file
 $session->config->deleteFromArray("authMethods","IP");
 #Delete all of the authentication settings

$session->setting->remove("ipIpvisitorId");
 $session->setting->remove("ipAllowedIPAddress");
 $session->setting->remove("ipAccountTemplateId");
 $session->setting->remove("ipCreateAccountTemplateId");
 $session->setting->remove("ipLoginTemplateId");
 #Reset the default IP setting if it is set to ours
 if($session->setting->get("authMethod") eq "IP") {
 $session->setting->set("authMethod","WebGUI");
 }
 #Get all the users that are using our authentication method

149

WebGUI Developers Guide

 my $sql = q|
 SELECT
 userId
 FROM
 users
 WHERE
 authMethod = 'IP'
 |;
 my @users = $session->db->buildArray($sql);
 #Delete all of the users using our authentication method
 foreach my $userId (@users) {
 my $user = WebGUI::User->new($session,$userId);
 if(defined $user) {
 $user->delete
 }
 }
 #Clean up any of the remaining IP fields in the authentication table
 $sql = q|
 DELETE
 FROM
 authentication
 WHERE
 authMethod='IP'
 |;
 $session->db->write($sql);
 #Get all of the templates that are in our namespace
 $sql = q|
 SELECT
 assetId
 FROM
 template
 WHERE
 namespace IN ('Auth/IP/Create','Auth/IP/Account','Auth/IP/Login')
 |;
 my @assets = $session->db->buildArray($sql);
 #Push the assetId of the folder onto the asset array
 push(@assets,"IPAuthFolder0000000001");
 #Purge all of the templates and the folder
 foreach my $assetId (@assets) {

#Instantiate the asset
 my $asset = WebGUI::Asset->newByDynamicClass($session,$assetId);
 #Purge the template if it is defined

if(defined $asset) {

150

WebGUI Developers Guide

 $asset->purge;
 }

 }
 #Close the session and finish

$session->var->end;
$session->close;
print "Done. Please restart Apache.\n";

}

Begin by accepting the config file and home directory as arguments from
the command line and creating the WebGUI session as you did in your
install method. Then, use the WebGUI::Session::Config API to remove your
plugin from the config file. Use the WebGUI::Session::Setting API to remove
your local authentication settings from the database and make sure that the
default authMethod setting is not your authentication method. If it is, set it
back to the WebGUI authentication method.

Next, find all the users that currently use your IP auth method, which
includes your IP Visitor user. If you were so inclined at this point, you could
change all of the users to use a different authMethod, but for the sake of
this example simply delete all of these users with the WebGUI::User API.
Once you've done this, clean up any fields that might still exist in the
database that reference your authMethod (users that may have once used
your auth method, but no longer do, might still have properties configured).

Now, find all of the templates in your namespace from the template table,
push on the assetId of the folder from the install script, and proceed to
purge your templates and folders.

Once this is complete, your asset is uninstalled. Close the WebGUI session
and alert the user that Apache must be restarted in order for the changes to
take affect. You now know everything you need to create powerful
authentication plugins to run your WebGUI site as you see fit.

151

WebGUI Developers Guide

Workflow Activities
Workflow Activities are plugin points into the WebGUI workflow engine.
They allow you to do offline or asynchronous tasks, as well as a few online
or synchronous tasks. Examples of workflow activities include asking a
user a question, sending an email, publishing some content, deleting
temporary files, and running external programs.

The Workflow Engine

To understand how to write good workflow activities, you really need to
understand how the WebGUI workflow engine works. A workflow engine is
an event-triggered state machine and execution system. In plain words,
something happens to cause a workflow to be executed, the workflow
engine keeps track of where it is in the process, and runs each task along
the way.

Steps of WebGUI Workflow

Everything starts with a trigger:
something must kick off the
workflow. It could be that it's noon on
Saturday, or that a user published
some content, or that a user
registered on the site, or that you
received some email in your inbox.
You can even have one workflow be
the trigger of another, as shown in
the diagram to the right.

Then you have the workflow itself. A
workflow is a list of activities (or
tasks) to be executed in a particular
order. A workflow can be a single
activity, or many of them strung
together.

An activity is a task, or a single atomic unit of work, that you need to be
done. It could be delete an asset, roll back a version tag, email a user, run
an external program, check a folder for a file, etc.

152

WebGUI Developers Guide

Synchronicity

WebGUI's workflow engine is both synchronous and asynchronous. Most
workflow systems are one or the other.

Synchronous (in the user interface called “realtime”) workflows execute to
completion immediately upon being triggered. Because of this, there can't
be anything in a realtime workflow that could get stuck waiting for external
input, or that would take a long time to execute. For example, if a workflow
is set up to be realtime, and you have an approval process in the workflow,
the user will have to wait hours, or even days, for the page to return after
clicking on a link. In reality, what would happen is that the page would time
out and the user would get an error. Obviously, this is unacceptable, so
realtime workflows should only be used in situations where you aren't
blocking for input, and where things can happen very quickly.

Asynchronous workflows, on the other hand, happen in the background.
They can take all the time they need to execute, because no user is
immediately waiting on the result. In asynchronous workflows, there is a
controller, also called a governor, that executes one task in a workflow, then
another task perhaps in a completely different workflow, and so on. The
controller is in charge of what gets executed and when. Because of this,
there can be priorities assigned to workflows, and the system can queue
many workflows, and be able to handle many more workflows than could
otherwise be handled. It can take advantage of queuing to execute
workflows over a longer period of time. For example, if the system had
10,000 workflows start all at once, it's likely that your server would not be
able to handle them and crash. However, an asynchronous system just
puts all the workflows into a queue, prioritizes them, and slowly begins its
work of executing all 10,000 workflows.

Workflow Engine Components

The workflow engine consists of a controller that hands out tasks, a worker
that executes the tasks, and some data to operate on.

153

WebGUI Developers Guide

The controller is called Spectre. It keeps a list of what workflows need to be
executed and at what priority. When it's time to execute a workflow, it tells
WebGUI to actually do the work. WebGUI is the worker because it already
has all the code loaded and waiting to run, so why write/run another
worker? It has another advantage, though. Since WebGUI can be load
balanced, it makes the workflow engine infinitely scalable.

Spectre and WebGUI work in conjunction like this to accomplish all their
tasks.

Spectre and WebGUI Communicate

Spectre and WebGUI talk to each other. WebGUI lets Spectre know when a
new workflow has been triggered by a user or some other mechanism.
Likewise, it lets Spectre know when priorities change, or when a user
modifies a workflow. In turn, Spectre tells WebGUI when it's time to run a
workflow, or when something has been triggered based upon time or date.
From a high level, the communication looks like this:

154

WebGUI Developers Guide

A more detailed view of the interaction between Spectre (black) and
WebGUI (orange) looks like this:

Let's zoom in a little on that. First, Spectre starts up and asks WebGUI

155

WebGUI Developers Guide

what workflows and cron jobs (events triggered by time) are pending in the
queue for each site. Then it starts its workflow and cron job handlers.

Upon starting the cron handler, it starts checking to see if any cron tasks
are ready to be triggered. That process looks like this:

156

WebGUI Developers Guide

And if something is ready to be triggered, then it tells WebGUI that it's time
to trigger that event.

157

WebGUI Developers Guide

At this point WebGUI has to do a little sanity check to make sure that it
actually is Spectre making the request, and that the workflow being
requested to be triggered exists. If it does, it creates a new workflow
instance (a running workflow), which is discussed next.

Once Spectre has started its workflow handler, it can start running through
its queue to get the next workflow to be run. It also has to keep track of
how many workflows it already has running that haven't completed so it
doesn't overwhelm WebGUI with a lot of extra requests.

158

WebGUI Developers Guide

Then, it can tell WebGUI that it's time to run a particular workflow. It does
the same kind of validity handshake that it did with the scheduler.

159

WebGUI Developers Guide

Then, WebGUI determines what the next activity to run is, loads the module
for that activity, and runs it. Depending upon whether it's the last activity in
the workflow or not, and whether it executed successfully, it will tell Spectre
if it completed the activity, if it's waiting for input, if it had an error, or if the
workflow is done.

160

WebGUI Developers Guide

WebGUI::Workflow::Activity API

Though there are many methods provided by the
WebGUI::Workflow::Activity class, there are five methods that you
absolutely must know about in order to write a workflow activity. They are
definition(), execute(), and the three state methods ERROR(), WAITING(),
and COMPLETE(). Look at the API for the version of WebGUI you're
working with for full API details.

definition()

If you're familiar with writing assets or form controls, then the definition
method should be familiar, because it works in much the same way. The
definition method tells the activity what data it consumes, and sets a few
properties about the activity. Here's an example from an existing activity:

sub definition {
 my $class = shift;
 my $session = shift;
 my $definition = shift;
 my $i18n = WebGUI::International->new($session,
"Workflow_Activity_CleanTempStorage");
 push(@{$definition}, {
 name=>$i18n->get("activityName"),
 properties=> {
 storageTimeout => {
 fieldType=>"interval",
 label=>$i18n->get("storage timeout"),

161

WebGUI Developers Guide

 defaultValue=>6*60*60,
 hoverHelp=>$i18n->get("storage timeout help")
 }
 }
 });
 return $class->SUPER::definition($session,$definition);
}

As you can see, you set the human readable name of the activity (in this
case using internationalization), and set what fields should be displayed to
the user as settings.

States

When developing your activity, you need a way to communicate to the
workflow engine whether or not your activity successfully completed.
That's where states come in. There are currently three states that you can
use with your activity, and they are called as methods that you would
return.

return $self->COMPLETE;

Complete is used to let the workflow engine know that you have completed
your unit of work successfully and it's okay to move on to the next step in
the workflow.

return $self->ERROR;

The error state means something went wrong. It could be that you tried to
connect to a mail server and it was down. The workflow engine doesn't
need to know why your activity failed, only that it did. However, the human
system administrator does, so in the case of an error, put something in the
log.

return $self->WAITING;

Waiting lets the workflow engine know that you didn't encounter an error,
but the activity didn't complete just the same. This can happen if you're
waiting for a user to give you some input, or perhaps whatever the activity
is doing (maybe sending out 100,000 emails) is taking a really long time.
Therefore, you need to give the resources back to the workflow engine, and

162

WebGUI Developers Guide

it will call this activity again when there's time.

execute()

The execute method is the equivalent of the view method in an asset. It's
the work that's going to get done. This is where you put your working code,
and also where you use the state methods.

The execute method gets three objects passed into it. As with any object,
the first object passed in is a reference to the activity itself. With that you
can get access to the session, the states, properties set by the workflow
editor, etc. The second object is a reference to the data this activity will be
operating on. Some activities don't work on an object, but most do. So it
might be a WebGUI::Group, a WebGUI::VersionTag, a WebGUI::User, or
some other object. The third, and final, object passed in is a reference to
the running workflow; this is the instance object.

Here's a typical execute method from an existing activity:

sub execute {
 my $self = shift;
 my $versionTag = shift;
 my $completion = $versionTag->commit({timeout=>55});
 if ($completion == 1) {
 return $self->COMPLETE;
 } elsif ($completion == 2) {
 return $self->WAITING;
 }
 return $self->ERROR;
}

WebGUI::Workflow::Instance API

There is generally not a lot that you need to use out of the instance API
except for one category of methods: scratch. Scratch methods allow you to
attach data to the workflow instance. This can be useful for a couple of
things.

The first, and most used, is to maintain state information. For example, let's
say your workflow activity sends out 100,000 emails, and that your mail
server is capable of accepting a maximum of 10 emails per second. After
60 seconds your workflow activity should give up, and return the resources
back to the workflow engine (more on this later in the chapter), so that

163

WebGUI Developers Guide

means you will have only sent out 600 emails. You can set a scratch
variable in the workflow instance to remind your activity where it left off the
last time it ran.

The second is to pass information between two or more workflow activities
within a workflow. Since the workflow activities run independently, there's
no way for them to pass data from one to the next, at least directly. By
setting a scratch variable in one activity, another down the line can read
that scratch variable and make use of its data. You must be careful when
using scratch variables for this reason. If you set a scratch variable that you
don't intend for another workflow activity to use later, then you should
delete it when you no longer need it.

setScratch()

Use the setScratch method to set a variable. The first parameter is the
name of the variable, and the second is the value. Note that scratch
variables can only be scalars, not references, hashes, arrays, or objects.
Therefore, if you need to store a hash, for example, you should serialize it
into a scalar using JSON. Here's an example use of setScratch using
JSON:

$instance->setScratch(“cars”, JSON::to_json(\%cars));

getScratch()

Use the getScratch method to retrieve a variable. Its only parameter is the
name of the variable you wish to retrieve. Here's an example, again using
JSON to deserialize a hash:

my $cars = JSON::from_json($instance->getScratch(“cars”));

deleteScratch()

Use the deleteScratch method to delete a variable. Its only parameter is the
name of the variable you wish to delete. Here's an example:

164

Scratch variables are automatically partitioned between workflow instances, so
you don't have to worry about one workflow instance using another instance's
scratch variables. Likewise, when a workflow instance is complete (when it has no
more activities to run) it will automatically clean up any outstanding scratch
variables.

WebGUI Developers Guide

$instance->deleteScratch(“cars”);

Rules to Work By

There are a few things to keep in mind as you design your activities. Let's
call them rules to work by.

First, no workflow activity should run for longer than 60 seconds at a time.
There are two practical reasons for this. One is that workflows are handled
between WebGUI and Spectre talking through Apache. Therefore, if it takes
longer than 60 seconds, the connection might time out. The other is that
workflow is about cooperative multitasking. That means that processes
should give up their resources once in a while in case there is something
higher priority to get done. Without this, the workflow queue could become
bogged down very quickly on busy and complex sites. If you need
something to run longer than 60 seconds, then either maintain state using
scratch variables so you can pick up where you left off, or hand off the task
to a daemon that is designed to handle long running processes.

Second, clean up after yourself. Don't leave temporary files, scratch
variables, and other data lying around. If you make a mess, clean it up so
not to gum up the works.

Third, make your activities small and uncomplicated. Rather than making a
really complicated activity, break up the activity into small parts. This will
make coding and testing easier, and will allow your users to extend the
uses of your activities in ways you never dreamed of.

Workflow Activity Examples

Here are a few workflow activity examples to get you started.

Hello World

The following example demonstrates creating a bare bones workflow
activity that simply prints “Hello World” to a file. Print it to a file because
workflow activities have no human viewable output.

165

WebGUI Developers Guide

package WebGUI::Workflow::Activity::HelloWorld;

use strict;
use base 'WebGUI::Workflow::Activity';

sub definition {
 my ($class, $session, $definition) = @_;
 push(@{$definition}, {
 name => 'Hello World',
 properties => { }
 });
 return $class->SUPER::definition($session,$definition);
}

sub execute {
 my ($self, $object, $instance) = @_;
 open my $file, '>', '/tmp/helloworld.txt';
 print {$file} "Hello World";
 close($file);
 return $self->COMPLETE;
}

Email Poll Example

Let's say that your boss tells you that she wants to create a poll, but
instead of putting it out on the web site, she wants to conduct the poll via
email. “Great!” you say, and think to yourself, “How the hell am I going to
do that?”

Functional Specification

Your boss has given you instructions on how her email poll should work.

1. It should email a group of users from the web site.

2. The email should contain the question, and a list of possible answers
as links.

3. The users should be able to click on the links to respond to the poll.

4. The responses should be stored somewhere so reports can be
generated later.

5. The poll should end after one month and reject further responses
after that time.

166

WebGUI Developers Guide

Technical Specification

From your boss's list of features, you can draft a simple technical
specification.

1. The workflow type for this activity should be WebGUI::Group, so that
the group object passed into the activity will be the list of users
emailed.

2. The email will have to be HTML based so you can put links in it.

3. You can use WebGUI's built-in send email to group feature in
WebGUI::Mail::Send to email the group.

4. You'll have to create some www_ methods in the activity to handle
the responses when users click on a link.

5. The workflow activity should return WAITING during the response
period so that it can collect responses.

Ideally, at this point you'd also create a database schema for storing the
data, a flow chart diagram illustrating the use case, and some sample
screen shots of what the email and response pages would look like. Then
have your boss sign off on these things before proceeding with
development.

The Code

Now that your boss has signed off, you can begin coding.

Always start writing an activity by using the code skeleton provided in
lib/WebGUI/Workflow/Activity/_activity.skeleton. Begin with the typical
header information.

package WebGUI::Workflow::Activity::EmailPoll;
use strict;
use base 'WebGUI::Workflow::Activity';

167

Internationalization, heavy comments, and POD have been left out for the sake of
clarity in this example, but when you're writing your own activities you should
always use them.

WebGUI Developers Guide

use WebGUI::Mail::Send;

Now, you need to set up your definition. Call the activity something simple
yet meaningful: “Email Poll”. Then, define a few properties about the
activity that you expect your workflow editor to set. You need to have a
subject for the email, the question, and the list of answers. Those are all
pretty obvious, but because you know your boss likes to change her mind
a lot, also build in a timeout setting, so that if she decides that the poll
should last for two weeks or two months instead of four weeks, it's an easy
change.

sub definition {
 my ($class, $session, $definition) = @_;
 push(@{$definition}, {
 name=>"Email Poll",
 properties=> {
 subject => {
 fieldType=>"text",
 label=>"Subject",
 hoverHelp=>"Put the email subject here."
 },
 question => {
 fieldType=>"HTMLArea",
 label=>"Question",
 hoverHelp=>"Put your question/description here."
 },
 answers => {
 fieldType=>"textarea",
 label=>"Answers",
 hoverHelp=>"Put your answers here. One per line."
 },
 timeout => {
 fieldType=>"interval",
 label=>"Timeout",
 defaultValue=>60*60*24*7,
 hoverHelp=>"How long should we allow people to respond?"
 },
 }
 });
 return $class->SUPER::definition($session,$definition);
}

168

WebGUI Developers Guide

Next, create your execute method, which does the work. Because this
activity contains a multi-step process, use the execute method as a “main”
or controller. You could also break up these steps into separate activities,
but that might be too complicated for your first example, so this example
keeps them in one activity. This example makes use of scratch variables to
maintain the state of which step you're on.

sub execute {
 my ($self, $group, $instance) = @_;
 my $endDate = $instance->getScratch("pollEndDate");
 # haven't sent the email yet
 if ($endDate eq "") {
 $self->sendMessage($group);
 $instance->setScratch("pollEndDate", time() + $self->get("timeout"));
 return $self->WAITING;
 }
 # time isn't up
 elsif (time() < $endDate) {
 return $self->WAITING;
 }
 # time is up
 else {
 $instance->deleteScratch("pollEndDate");
 return $self->COMPLETE;
 }
}

Because you defined a sendMessage method in the execute method, you
need to define that in your code. Here, you're going to make use of the
WebGUI::Mail::Send package to send out your emails to the group. That
way you don't actually have to look at the group, find the users, look up
their email addresses, and send out a number of individual emails. In the
email, define URL's for the responses, and one of those parameters is the
“method” name that you're going to use to handle those responses. That
method is built next.

sub sendMessage {
 my ($self, $group) = @_;
 my $url = $self->session->url;
 my $mail = WebGUI::Mail::Send->create($self->session, {
 toGroup => $group->groupId,
 subject => $self->get("subject"),

169

WebGUI Developers Guide

 });
 my $message = $self->get("question").'';
 foreach my $answer (split("\n", $self->get("answers"))) {
 next if $answer =~ m/^\s*$/;
 my $url = $url->page(
 "op=activityHelper;class=EmailPoll;method=respond;response="
 .$url->escape($answer)
 .";instanceId=".$self->getId,
 1
);
 $message .= qq|$answer|;
 }
 $message .= '';
 $mail->addHtml($message);
 $mail->queue;
}

Now, you can build the handler to deal with users clicking on the response
links in their emails. Note that if the workflow instance isn't still valid, then
the user won't be able to vote and will get a friendly rejection message.

sub www_respond {
 my $session = shift;
 my $instance = WebGUI::Workflow::Instance->new(

$session,
$session->form->get("instanceId")
);

 my $output = q|<h1>Thank You</h1>|;
 if (defined $instance) {
 my $response = $session->form->process("response", "text");
 # store the response somewhere
 $session->db->setRow("EmailPollResponses", "instanceId", {
 instanceId => $instance->getId,
 response => $response
 });
 $output = q|Thank you for your response.|;
 }
 else {
 $output = q|Thank you for your response, but unfortunately our poll has ended.|;
 }
 return $session->style->userStyle($output);
}

170

WebGUI Developers Guide

And that's all. With only four subroutines, you've built an email based
polling system that can be tied into WebGUI.

Configuration

Now that you've built your activity, you simply need to put it in the WebGUI
config file so that your users can use it. This is fairly simple. Just add the
workflow object type of “WebGUI::Group” to the “workflowActivities”
directive in the config file. Then, put your activity in that new object type.

"workflowActivities" : {
“WebGUI::Group” : [“WebGUI::Workflow::Activity::EmailPoll”],
...
},

After you've made this change, restart WebGUI for the change to take
effect.

171

WebGUI Developers Guide

Assets
An asset is the basic unit of content inside WebGUI. Assets can be files,
images, articles, CSS, JavaScript, forums, calendars, galleries,
applications, and more. Some assets are used to display other assets.
Some assets are used to display and manage collateral data. Assets are
the base of WebGUI, the main event, the big show, the way to get WebGUI
to do what you need.

With the full power of the Session object and the rest of the WebGUI API,
you can make assets that can do anything. With the SQL API, you can
make an asset to manage your customer information. With the User and
ProfileField API's, you can make new ways to display and manage user
information.

The Bare Necessities: a Cliched Example

Making the simplest of assets is a simple process. To make it even easier,
you could start with the asset skeleton, located in
WebGUI/lib/WebGUI/Asset/_NewAsset.skeleton. The example here starts
from scratch with the barest minimum. These lines set up your new asset
as a subclass of WebGUI::Asset.

package WebGUI::Asset::HelloWorld;
use strict;
use base 'WebGUI::Asset';

Definition

The definition method gives information to your asset. The asset's
properties, what table in the database, and the internationalized name of
the asset are just part of the information you can get from the definition.

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;

These lines start your definition. sub definition is a class method, so the
first argument will be the class. $session is a WebGUI::Session object,
which you'll need later to get a WebGUI::International object (or other

172

WebGUI Developers Guide

things). $definition is a definition from a subclass. Since definitions need to
be inherited, each class's definition sub calls its parent's definition sub, and
so on up the chain to WebGUI::Asset->definition(). The end result is an
array reference of hash references, with your new class's information as the
first element.

tie my %properties, 'Tie::IxHash', (

Next, create a hash to store your asset's properties. In order to maintain the
order of the hash, the example uses Tie::IxHash. This way, every time you
call values %properties, or keys %properties, the information returned will
be in the same order as they were added (read Perldoc Tie::IxHash for
more information). To begin, add a property that will store what greeting
you want to use.

tie my %properties, 'Tie::IxHash', (
greeting => {

tab => 'properties',
fieldType => 'text',
defaultValue => 'Hello',
label => 'Greeting',
hoverHelp => 'What greeting to give the user',

},
);

These properties will show up inside of a WebGUI::TabForm, so asset
properties are defined in terms of a WebGUI::Form::Control object with
some additional properties added in. From top to bottom, you have:

tab

This is which tab of the WebGUI::TabForm this property will show up in.
This will be discussed again later.

fieldType

The fieldType is the type of WebGUI::Form::Control this property is. This will
prefix "WebGUI::Form::" to this value, and upper-case the first character, so
this greeting is a WebGUI::Form::Text control.

173

WebGUI Developers Guide

defaultValue

This is the default value for this property. This
is not only given to the
WebGUI::Form::Control, but it is handled
specially by the update() sub.

label

This is the label that will be used for this property. This will usually be
something from a WebGUI::International object, which is covered later.

hoverHelp

This will be shown when a user hovers over the label for this property. It is
also something that should be part of a WebGUI::International object.

Additional keys in the property hash reference will be given directly to the
form control object, so see the WebGUI::Form::Control subclass for more
information. Properties are only one part of the definition, though they are
the most important part.

push @$definition, {
properties => \%properties,
assetName => 'Hello World',
icon => 'assets.gif',
tableName => 'HelloWorld',
className => __PACKAGE__,
autoGenerateForms => 1,

};
return $class->SUPER::definition($session, $definition);

}

Here's where you add your entry to this asset's definition and send it up the
chain. From top to bottom:

properties

Here's where you give a reference to your hash of properties.

174

If you ever want this
property to be "NULL" or
undef, the defaultValue for
this property must be
undef.

WebGUI Developers Guide

assetName

This is the name of the asset, which will show up on the edit form, the new
content pane, and other places. This may be internationalized.

icon

This is a filename for an image to be used as this asset's icon. The asset
icons are located in the WebGUI/www/extras/assets directory, with the
smaller version located in WebGUI/www/extras/assets/small. One filename
will be used in both folders.

tableName

This is the name of the table in the WebGUI database.

className

This is the name of the class you're making. Using the __PACKAGE__
special value makes this easy.

autoGenerateForms

If this is set to a true value, the asset edit form will be automatically
generated from the properties. In most cases, you'll want to leave this set
to 1. Advanced techniques with the asset edit form will be covered later.

The final line sends your definition to your superclass, which will in turn
send it up until it reaches WebGUI::asset.

Though all of these keys are required, the most important is the tableName.
This is the name of the table that this asset's properties will be stored in.
Only this class's properties will be stored in this table, since each level of
the definition has its own tableName. This is an important part of the asset
system, and what makes subclassing easy.

Create the Database Table

Since your tableName is "HelloWorld", you must make a table in your
database called "HelloWorld".

CREATE TABLE `HelloWorld` (
`assetId` VARCHAR(22) BINARY NOT NULL,

175

WebGUI Developers Guide

`revisionDate` BIGINT NOT NULL,
`greeting` VARCHAR(255),
PRIMARY KEY (`assetId`, `revisionDate`)

);

Your table needs at least the assetId and revisionDate columns, with those
exact properties. The assetId is a base64 string, so it needs the BINARY
property in order to ensure that it's treated as case-sensitive. The
revisionDate is an epoch time, so it needs a BIGINT so that it doesn't
overflow a normal INT field.

Following the two required columns is your greeting column. This column
has the same name as the key from the properties hash. Since it's a text
field, assign a varchar type to it. Notice that you cannot tell this column to
be NOT NULL, since new assets are initially inserted with only the assetId
and revisionDate columns when they are added to the database. Only
these columns can be NOT NULL.

The final line sets your primary key to be a combination of the assetId and
revisionDate columns. Since assets are most often looked up by both
assetId and revisionDate, this will significantly speed up the lookups.

View Method

The other required method is the view method. This method is the default
view for the asset. It differs from www_view (and other www_ methods) in
that this method will be called when the asset is part of a Page Layout.
www_view is what is called when the asset is accessed directly, which in
turn calls the view method. So for the default view, override the view
method.

sub view {
my $self = shift;
my ($session, $user) = $self->session->quick(qw(session user));
my $output = join ', ', $self->get('greeting'), $user->username;
return $output;

 }

The first two lines are self-explanatory. They set up the subroutine as an
object method. The next line gives you a couple objects from the session,
namely the session and user objects. The fourth line makes your output,

176

WebGUI Developers Guide

using the get(property) method to get your greeting, and gets the username
from the user object. Line five returns your output, which will then be
printed to the user.

Add the Asset to the Configuration Table

In order to actually use a new asset in your site, you need to tell WebGUI
about it. This is done through the configuration file.

There are three sections in the WebGUI configuration file that control which
asset types are shown in the New Content menu of the admin accordion
and the asset manager. The first one, “assets”, is used for general-purpose
assets, and the Hello, World! asset would definitely fit in that category. The
other two are used for more specialized asset types. “utilityAssets” is best
used for those assets that are used less frequently by normal users.
“assetContainers” is reserved for those assets that don't have any content
of their own, but instead display other assets, like a Page Layout or a
Folder.

To add your asset, change the “assets” configuration to look something like
this:

“assets” : [
 “WebGUI::Asset::HelloWorld”,
 “WebGUI::Asset::Snippet”,
 “WebGUI::Asset::Redirect”,
 ...
],

Now, when you restart your server, your Hello World asset will be available
in the New Content menu.

Hello World

The complete HelloWorld asset looks like this:

package WebGUI::Asset::HelloWorld;
use strict;
use base 'WebGUI::Asset';
sub definition {

my $class = shift;

177

WebGUI Developers Guide

my $session= shift;
my $definition = shift;
tie my %properties, 'Tie::IxHash', (

greeting => {
tab => 'properties',
fieldType => 'text',
defaultValue => 'Hello',
label => 'Greeting',
hoverHelp => 'What greeting to give the user',

},
);
push @$definition, {

properties => \%properties,
assetName => 'Hello World',
icon => 'assets.gif',
tableName => 'HelloWorld',
className => __PACKAGE__,
autoGenerateForms => 1,

};
return $class->SUPER::definition($session, $definition);

}
sub view {

my $self = shift;
my ($session, $user)

= $self->session->quick(qw(session user));
my $output

= join ', ', $self->get('greeting'), $user->username;
return $output;

}
1; # The truth is right here

Adding a Template

Time for a more fun example: make an InfoCard to store some personal
information about a person. While you're at it, add a template so that users
of your asset can decide how to display that information. Start out with
making your new properties. First, make a template.

 sub definition {
 my $class = shift;
 my $session= shift;
 my $definition = shift;

 tie my %properties, 'Tie::IxHash', (

178

WebGUI Developers Guide

 templateIdView => {
 tab => 'display',
 fieldType => 'template',
 label => 'Template',
 hoverHelp => 'Template for this InfoCard',
 namespace => 'InfoCard',
 },

The templateIdView property will use WebGUI::Form::Template (line 9) to
make a select box populated with templates in the InfoCard namespace
(line 12). This property will show up on the display tab (line 8), which is the
standard place for template select boxes.

For your additional properties, make some fields for the person's name,
address, city, state, zip, country, phone, and e-mail.

 name => {
 tab => 'properties',
 fieldType => 'text',
 label => 'Name',
 hoverHelp => 'The persons name',
 },
 address => {
 tab => 'properties',
 fieldType => 'textArea',
 label => 'Address',
 },
 city => {
 tab => 'properties',
 fieldType => 'text',
 label => 'City',
 },
 state => {
 tab => 'properties',
 fieldType => 'text',
 label => 'State',
 size => 2,
 },
 zip => {
 tab => 'properties',
 fieldType => 'zipcode',
 label => 'Zip Code',

179

WebGUI Developers Guide

 },
 country => {
 tab => 'properties',
 fieldType => 'country',
 label => 'Country',
 },
 phone => {
 tab => 'properties',
 fieldType => 'phone',
 label => 'Phone',
 },
 email => {
 tab => 'properties',
 fieldType => 'email',
 label => 'E-Mail',
 },
);

Finally, to round out your definition method, you'll need your other
properties.

 push @$definition, {
 properties => \%properties,
 assetName => 'InfoCard',
 icon => 'assets.gif',
 tableName => 'InfoCard',
 className => __PACKAGE__,
 autoGenerateForms => 1,
 };
 }

The creation of the InfoCard table is left as an exercise for the reader.

getTemplateVars

Once you have your definition, you can create your view. This time,
however, instead of just returning a bunch of HTML, you're going to build a
template. The first thing you need to do is build a method to get the
variables you're going to give the template processor. Call your method
getTemplateVars.

180

WebGUI Developers Guide

 sub getTemplateVars {
 my $self = shift;
 my $var = $self->get;

 $var->{ url } = $self->getUrl;

 return $var;
 }

Since most of the interesting data is part of your asset's properties, start
out with that. The get method, when given no arguments, returns a hash
reference of the asset's properties. Since the asset's URL property may not
be the same URL that the user needs to access your asset, due to gateway
or other considerations, override the URL property with the value from
getUrl, which gets an absolute URL to your asset (including gateway, but
not including the domain). Finish up by returning this hash reference.

processTemplate

Once you have your template vars, you need to put them inside a template.
Since this is such a common operation, there's an easy way to do it:
processTemplate.

181

There are other things that look for a getTemplateVars method before defaulting to
the get method. It is good practice to have a getTemplateVars method.
getTemplateVars should return the template vars needed for every view of the
asset, including those that may be useful outside the asset's view methods.

WebGUI Developers Guide

 sub view {
 my $self = shift;
 my $var = $self->getTemplateVars;
 return $self->processTemplate($var, $self->get('templateIdView'));
 }

processTemplate will instantiate the WebGUI::Asset::Template object with
the given ID (the second argument), and give the processor the hash
reference of variables (the first argument). It then returns the value from the
template's process method. The end result is the template gets processed
and you get your output.

prepareView

One of WebGUI's many features is Content Chunking. In short, this means
that the user is given something, anything, before the real process intensive
operation (the view method probably) is run. In order to make this happen,
you need to be able to send the HTTP header and the site header (which
includes the <head> block) before you run the view method, but your asset
(and its template) may have tags it wants to add to the <head> block.

For this reason, there's the prepareView method. prepareView prepares the
template that is to be used in the view method.

 sub prepareView {
 my $self = shift;
 $self->SUPER::prepareView();
 my $templateId = $self->get('templateIdView');
 my $template
 = WebGUI::Asset::Template->new($self->session, $templateId);
 $template->prepare;
 $self->{_viewTemplate} = $template;
 return;
 }

Starting with line 3, call the superclass prepareView. The top-level,
WebGUI::Asset::prepareView prepares the head tags for the asset and
adds them to the queue to be printed. Lines 4-7 instantiates your template
and prepares it, which adds its own head tags to the queue to be printed.
Line 8 adds your template to the object, which you'll need later, and line 9
is the best practices method of ending a sub with nothing returned.

182

WebGUI Developers Guide

Now, you need to alter your view method to use the prepared template.

 return $self->processTemplate($var, undef, $self->{_viewTemplate});

The third argument to processTemplate allows you to pass in the already-
prepared template.

The completed WebGUI::Asset::InfoCard:

package WebGUI::Asset::InfoCard;
use strict;
use base 'WebGUI::Asset';
use Tie::IxHash;
sub definition {

my $class = shift;
my $session= shift;
my $definition = shift;
tie my %properties, 'Tie::IxHash', (

templateIdView => {
tab => 'display',
fieldType => 'template',
label => 'Template',
hoverHelp => 'Template for this InfoCard',
namespace => 'InfoCard',

},
name => {

tab => 'properties',
fieldType => 'text',
label => 'Name',
hoverHelp => 'If you need help here, try a professional.',

},
address => {

tab => 'properties',
fieldType => 'textArea',
label => 'Address',

},
city => {

tab => 'properties',
fieldType => 'text',
label => 'City',

},
state => {

tab => 'properties',

183

WebGUI Developers Guide

fieldType => 'text',
label => 'State',
size => 2,

},
zip => {

tab => 'properties',
fieldType => 'zipcode',
label => 'Zip Code',

},
country => {

tab => 'properties',
 fieldType => 'country',

label => 'Country',
},
phone => {

tab => 'properties',
fieldType => 'phone',
label => 'Phone',

},
email => {

tab => 'properties',
fieldType => 'email',
label => 'E-Mail',

},
);
push @$definition, {

properties => \%properties,
assetName => 'InfoCard',
icon => 'assets.gif',
tableName => 'InfoCard',
className => __PACKAGE__,
autoGenerateForms => 1,

};
}
sub getTemplateVars {

my $self = shift;
my $var = $self->get;

$var->{ url } = $self->getUrl;
return $var;

}
sub prepareView {

my $self = shift;
$self->SUPER::prepareView();

184

WebGUI Developers Guide

my $templateId = $self->get('templateIdView');
my $template

= WebGUI::Asset::Template->new($self->session, $templateId);
$template->prepare;
$self->{_viewTemplate} = $template;
return;

}
sub view {

my $self = shift;
my $var = $self->getTemplateVars;
return $self->processTemplate($var, undef, $self->{_viewTemplate});

}
1;

The Edit Form

You now have an asset that stores a person's information and displays that
information using a template. Now the powers that be have decided that
you need to keep track of updates to a person's information, what was
updated, and, most importantly, why. Luckily for you, with the asset
versioning system, WebGUI will already keep track of what was updated,
but you'll need to keep track of the why.

getEditTabs

Instead of putting this on the properties tab with the rest of the information,
this example makes a new tab called "History". To add more tabs to the
asset edit form, override the getEditTabs method.

 sub getEditTabs {
 my $self = shift;
 return (
 ['history', "History"],
);
 }

getEditTabs returns a list of array references. The first element in the
arrayref is the ID of the tab, which you'll use in the definition sub. The
second element is the label, which is the friendly label for the user. Now, if
you go to your asset edit page, you'll see an additional tab called History,
but you've yet to put any properties in it. Add a text area to the history tab
by adding it to the properties in the definition sub.

185

WebGUI Developers Guide

 history => {

 tab => 'history',
 fieldType => 'textArea',
 label => 'History',
 },

Once you add history to your data table, you'll be able to edit the history
from your asset edit page, but now you'll also be able to edit the old
history, which shouldn't be allowable. You're going to have to do something
different. Add the old history as text on the history tab, and have the form
element be for adding to the history (instead of changing the history).

getEditForm

The getEditForm method returns the WebGUI::TabForm object that will
render the asset edit form. If you want to change how the edit form looks,
you can override it and add to it as you wish. If you want to replace the
elements you defined in the definition properties, first you need to tell
WebGUI not to add the element automatically with the autoGenerate key:

 history => {
 tab => 'history',
 fieldType => 'textArea',
 label => 'History',
 autoGenerate => 0,
 },

By setting autoGenerate to some false value (0, undef, "", or "0"), the
default getEditForm method will not add the property field to the TabForm,
so you can add it yourself by overriding the getEditForm method.

 sub getEditForm {
 my $self = shift;
 my $tabform = $self->SUPER::getEditForm;
 $tabform->getTab('history')->raw('<pre>' . $self->get('history') . '</pre>');
 $tabform->getTab('history')->textArea({
 name => 'history',
 value => ($self->session->form->get('history')),
 });
 return $tabform;
 }

186

WebGUI Developers Guide

Start by getting the initial tabform by calling the superclass method. Next,
add the old history as plain text to the history tab. The getTab method
takes a single argument, the ID of the tab, and returns a
WebGUI::HTMLForm object. Then, call raw on that object to put in some
raw HTML.

After you add the old history, add the form element for the new history as
shown in lines 5-8. Give it the same name as the property from the
definition, and a value from the current form submit. Get the value from the
session in case the form gets shown again after it's submitted, which can
happen if there are any errors in the form.

Finally, return the tabform object so that it can be rendered. Now, your form
looks like you want it to, but you're still resetting the history every time you
hit the Save button. How can you take the value of the history element and
add it to the old history?

processPropertiesFromFormPost

Pressing the Save button on the asset edit form runs the www_editSave
method. This method has the appropriate magic for adding and editing
assets, but the method that actually saves the information from the edit
form is processPropertiesFromFormPost. By default, it overwrites all the
properties it gets, which will destroy your old history, so you're going to
have to tell it not to by using the noFormPost key in the definition.

 history => {
 tab => 'history',
 fieldType => 'textArea',
 label => 'History',
 autoGenerate => 0,
 noFormPost => 1,
 },

Now the old value won't get clobbered by the new value, but you still
haven't done anything to add the new value. Do so by overriding the
processPropertiesFromFormPost method.

 sub processPropertiesFromFormPost {
 my $self = shift;
 my $form = $self->session->form;
 my $errors = $self->SUPER::processPropertiesFromFormPost || [];

187

WebGUI Developers Guide

First, call the superclass processPropertiesFromFormPost. Since it may
return an array reference of errors, try to grab it. If it doesn't, initialize your
errors with an empty array reference. You need $errors to be an array
reference for the remainder of the sub.

 unless ($form->get('history')) {
 push @$errors, "You must update the History!";
 }
 return $errors if @$errors;

Next, verify that the user entered some history text. If the user didn't, add
the error to your list of errors. After compiling your list of errors, you can
return the array reference if necessary.

 # Data passes all checks, save
 $self->update({
 history => join "\n", $form->get('history'), $self->get('history'),
 });
 return;
 }

After you've verified your data, you can update your asset. Add your new
history on top of your old history. When you save your asset, you're
required to add a reason why you're editing it, and that reason is saved
along with all the old reasons.

www_edit

The final problem from the powers that be is that the asset edit form is part
of the Admin Console. Fortunately, this is easy enough to fix, as the most
important part of the www_edit page is handled by getEditForm. The only
important things that www_edit does is check that the user has privileges,
check that the asset is unlocked, and return the edit form.

 sub www_edit {
 my $self = shift;
 return $self->session->privilege->noAccess unless $self->canEdit;
 return $self->session->privilege->locked unless $self->canEditIfLocked;
 return $self->getAdminConsole->render($self->getEditForm->print);
 }

188

WebGUI Developers Guide

This is the default www_edit sub. To remove the asset from the Admin
Console, you just need to add this subroutine to your asset and edit line 5
like so:

 return $self->getEditForm->print;

Your edit form will now appear outside of the Admin Console. Your new
code looks like this:

sub getEditForm {
my $self = shift;
my $tabform = $self->SUPER::getEditForm;
$tabform->getTab('history')->raw('<pre>' . $self->get('history') . '</pre>');
$tabform->getTab('history')->textArea({

name => 'history',
value => ($self->session->form->get('history')),

});
return $tabform;

}
sub getEditTabs {

my $self = shift;
return (

['history', "History"],
);

}
sub processPropertiesFromFormPost {

my $self = shift;
my $form = $self->session->form;
my $errors = $self->SUPER::processPropertiesFromFormPost || [];
unless ($form->get('history')) {

push @$errors, "You must update the History!";
}
return $errors if @$errors;
Data passes all checks, save
$self->update({

history => join "\n", $form->get('history'), $self->get('history'),
});
return;

}
sub www_edit {

my $self = shift;
return $self->session->privilege->noAccess unless $self->canEdit;

189

WebGUI Developers Guide

return $self->session->privilege->locked unless $self->canEditIfLocked;
return $self->getEditForm->print;

}

More Definition Magic: Filters

By using another key in the definition, you can automatically apply filters to
all data in your asset properties. Say you're thinking ahead and want to
format the address property to be HTML-ized, based on the plain text
input. You don't just want to format it from the asset edit form. You also
want anyone adding your asset programmatically to have to go through this
filter too.

Instead of using processPropertiesFromFormPost(), which would only
cover users adding your asset from the asset edit form, you can use the
“filter” key in the properties part of your definition. This defines a subroutine
in your asset class to use to filter the data for that property.

 address => {
 tab => 'properties',
 fieldType => 'textArea',
 label => 'Address',
 filter => 'filterAddress',
 },

Here, define a filter called “filterAddress”. You need a method to handle the
filtering. This method takes the string to be filtered as the first parameter,
and returns the value to be set in the database.

sub filterAddress {
 my $self = shift;
 my $string = shift;
 my $output = $string;

 # First change newlines into HTML
 $output =~ s{\n}{
}g;

 # Wrap the whole thing in address tags if necessary
 if ($output !~ s{^<address>}) {
 $output = '<address>' . $output . '</address>';
 }

 return $output;

190

WebGUI Developers Guide

}

Now, whenever the address is changed, your filterAddress method will be
run to make sure that it adheres to the appropriate format.

Tips, Tricks, and Things Left Unsaid

● When something is wrong, step one is always to check the error log.

If you visit your asset and you see a blank screen, check the
WebGUI error log. If you don't see what you expect to see, check
the WebGUI error log. If things are bad enough that you see
Apache's Internal Server Error page, then check Apache's error log.

If the WebGUI error log doesn't have anything, make sure you bump
up the log level from ERROR to INFO or DEBUG. See etc/log.conf
for more details.

● When using WebGUI::Session::Privilege to return an error message,
use noAccess() over insufficient(). noAccess gives a login form for
those who are not logged in, and after they log in, they are taken
right to where they wanted to be instead of to the default view of the
asset. See WebGUI::Session::Privilege for more information.

● The default processTemplate() method adds a bunch of things to the
variables passed into it, including the asset's metadata, all the
asset's properties, and the controls for use in admin mode. The
controls should be added to each template you create. It's located in
<tmpl_var controls>. Use <tmpl_if session.var.adminOn> to show
only the controls when admin mode is on.

● By default, the canAdd() method checks if the user is allowed to add
any asset of the given class. It does so by checking the config file,
and falls back to the Turn Admin On group. As a rule, canAdd()
should check the lowest possible level of privileges: if anyone could
be allowed to add your asset, canAdd should just return true. If you
receive an error when trying to add your new asset, check canAdd
first.

● When saving a new asset, the user also has to pass a canEdit()
check on the parent asset. If you're writing an asset that will contain
other assets, you will probably need to make a special case in

191

WebGUI Developers Guide

canEdit() to handle adding new assets. If you checked canAdd and
are still receiving errors trying to add your new asset, check here
next. Note that the canAdd check is done before you see the form,
and the canEdit check is done after you fill in the form and click
Save.

● You can prevent certain classes from being added underneath your
asset by overriding addChild() and returning undef if the asset being
added doesn't pass your checks. This should only be done to make
sure the wrong assets don't get added as children of your asset,
since there will be no useful error message shown to the user.

192

WebGUI Developers Guide

Lineage
Every asset in WebGUI is part of the asset tree. Like a directory tree, the
asset tree starts with a Root asset. Every asset descends from the Root
asset. And, like a directory tree, every asset (except the Root asset) has a
parent. In WebGUI, many assets can contain other assets. Some assets
can only contain specific assets, like Calendars can only contain Events.
The relationship between a parent asset and its child is stored in the asset
table as "parentId".

Using the parentId, you can calculate the ancestry of any asset in the tree
by walking up and down the tree, using parentIds to determine how to
navigate, but this is unbearably slow. You'd need to query the database for
every level. To solve this problem, WebGUI uses lineage.

The lineage of an asset is like a cache of the asset's position in the tree.
Lineage is stored as a sequence of digits in the lineage column of the asset
table, with 6 digits per level. Say you have a Page Layout, inside a Folder,
with two Articles (Article1 and Article2), that each have two Images
(Image1a, Image1b, Image2a, and Image2b). Using lineage, you can
quickly look at the assets that are related to each other.

assetID Lineage

Root 000001

Page 000001000001

Article1 000001000001000001

Image1a 000001000001000001000001

Image1b 000001000001000001000002

Article2 000001000001000002

Image2a 000001000001000002000001

Image2b 000001000001000002000002

193

WebGUI Developers Guide

Since every asset is descended from the root asset, every asset's lineage
starts with the same six digits "000001". The Page Layout asset is a child
of the Root asset, so it has an additional six digits. Every new child that is
added will get a unique 6-digit number added to its parent's lineage, so the
Article1 asset, a child of the Page asset, has another six digits in its
lineage. The same with the Image1a asset.

Looking closer at the Image1a asset's lineage, you can determine a few
things:

Ancestors 000001 000001 Page

Parent 000001 000001 000001 Article1

*Self 000001 000001 000001 000001 Image1a

Siblings 000001 000001 000001 ------ Siblings have the same
parent

Children 000001 000001 000001 000001 ------ Children have Image1a as a
parent.

Descendants 000001 000001 000001 000001 ++++++ Descendants have Image1a
in their ancestry.

If you know an asset's lineage, you can instantiate it using the
newByLineage() method of the WebGUI::Asset class (located in the
AssetLineage mix-in). However, for most purposes you're going to want "all
children of this asset", or "all descendants of this asset.” For this, you can
use the getLineage() method (also in the AssetLineage mix-in).

The getLineage Method

getLineage is the standard way to get particular assets from the asset tree.
As such, it is an extremely powerful and flexible tool. At its simplest, it gets
all the assets with a certain relationship to the current asset. At its most
complex, it can select only particular types of assets, at particular
positions, and even return instantiated objects for you.

194

WebGUI Developers Guide

getLineage(relations [, options])

“relations” is an array reference of relations to get. It can consist of the
following values:

self Add the current asset to the list of returned.

siblings Add siblings of the current asset to the list returned.

children Add children of the current asset to the list returned.

descendants Add any descendant (including children).

ancestors Add the ancestors.

So, if you want to get all of the children of the Article1 asset from above:

$article1->getLineage(['children']);
> ['Image1a', 'Image1b']

Or, if you want to get every ancestor all the way up to the root asset:

$article1->getLineage(['ancestors']);
> ['Root', 'Page']

If you want to get every descendant of the Page asset, and include the
Page asset itself:

$page->getLineage(['self', 'descendants']);
> ['Page', 'Article1', 'Image1a', 'Image1b', 'Article2', 'Image2a', 'Image2b']

Query the Asset Tree

What if you only want to get certain types of assets in your lineage? Or only
a certain number? For this, you have “options.” options is a hash reference
with various keys that control the type and number of assets you get.

In order to control which types of assets you get, you can use the
includeOnlyClasses and excludeClasses options. These options allow you

195

WebGUI Developers Guide

to specify an array reference of class names to include or exclude from
your results, like so:

$page->getLineage(['descendants'], {
includeOnlyClasses => ['WebGUI::Asset::File::Image']

}
> ['Image1a', 'Image1b', 'Image2a', 'Image2b']

$page->getLineage(['descendants', {
excludeClasses => ['WebGUI::Asset::File::Image']

}
> ['Article1', 'Article2']

By default, getLineage will only get assets that have a state of “published”
and will do the right thing when it comes to versioning (status). For most
purposes, this is what you want, since assets in the trash, in the clipboard,
or in an open/pending version tag that you're not part of should not be part
of your normal operations. However, for the times when you need assets
with special states or statuses, you have the statesToInclude and
statusToInclude options:

Get all children of $asset that are pending
my $pendingChildren

= $asset->getLineage(['children'], {
statusToInclude => ['pending'],

});

Get all assets that are in the trash. $rootAsset is the Root asset
my $assetsInTrash

= $rootAsset->getLineage(['descendants'], {
statesToInclude => ['trash'],

});

Since getLineage is the standard way to get assets out of the asset tree,
there are ways to further limit which assets you get from the database.

The 'whereClause' option allows you to add an additional SQL where
clause to the query. By default, all of the columns in the asset and the
assetData table are available, so you can do things like...

Get all Post and Thread assets that were created in the last 24 hours
(Thread is a child asset of Post)

196

WebGUI Developers Guide

my $todaysPostsAndThreads
= $rootAsset->getLineage(['descendants'], {

includeOnlyClasses => ['WebGUI::Asset::Post',
'WebGUI::Asset::Post::Thread'],

whereClause
=> 'creationDate >

UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 1 DAY))
',

});

Get any asset that was added or modified in the last week
my $whatsNew

= $rootAsset->getLineage(['descendants'], {
whereClause

=> 'revisionDate >
UNIX_TIMESTAMP(DATE_SUB(NOW(), INTERVAL 7 DAY))

',
});

Get Wiki pages that were last modified by a certain user
my $wikiActivity

= $rootAsset->getLineage(['descendants'], {
whereClause => 'revisedBy = "3"',

});

The 'joinClass' option allows you to specify an asset class and join all the
tables that it uses so you can run queries against it. Combined with the
'whereClause' option, you can get very specific about the assets you get.

Get all Event assets that occur on December 25, 2008
my $christmasEvents

= $rootAsset->getLineage(['descendants'], {
joinClass => 'WebGUI::Asset::Event',
whereClause => 'Event.startDate = "2008-12-25"',

});

Due to the nature of inheritance and the class hierarchy, joinClass has a
useful side-effect: joining a class will also include all child classes in the
results (though you can't search on their attributes). If you don't want this
side-effect, you can use the includeOnlyClasses or excludeClasses
options.

197

WebGUI Developers Guide

Get all Image and Photo assets that are JPGs
my $jpegs

= $rootAsset->getLineage(['descendants'], {
joinClass => 'WebGUI::Asset::File::Image',
whereClause => 'filename REGEXP "jpe?g"',

});

Only get Image assets, not Photo assets.
my $jpegs

= $rootAsset->getLineage(['descendants'], {
joinClass => 'WebGUI::Asset::File::Image',
includeOnlyClasses => ['WebGUI::Asset::File::Image'],
whereClause => 'filename REGEXP "jpe?g"',

});

As you get even more specific with your queries of the asset tree, it
becomes important to be able to modify the order and number of the
assets you get. By default, the assets are sorted by their "lineage" field,
which is also known as sorting by rank (more on rank later). Using the
orderByClause option, you can order by any field to which you have
access.

Get the most recent content in descending order
my $whatsNew

= $rootAsset->getLineage(['descendants'], {
orderByClause => 'revisionDate DESC',

});

Get the threads in the message board $mboard ordered by their rating
my $recentThreads

= $mboard->getLineage(['descendants'], {
joinClass => 'WebGUI::Asset::Post::Thread',
includeOnlyClasses => ['WebGUI::Asset::Post::Thread'],
orderByClause => 'threadRating DESC',

});

The above examples will return the assets in the order you want, but it will
also return all the assets that match the query. Often you don't want all the
assets, but only a few or only from certain depths in the tree. You have
three ways to limit the number of assets you get. ancestorLimit and
endingLineageLength establish a window of tree depths to retrieve, and

198

WebGUI Developers Guide

limit determines the number of assets you get.

Only get three levels down from the current asset $asset
my $threes

= $asset->getLineage(['descendants'], {
endingLineageLength => $asset->getLineageLength + 3,

});

Only get three levels up from the current asset $asset
my $christmasList

= $asset->getLineage(['ancestors'], {
ancestorLimit => 3,

});

Get the first Page Layout asset in our ancestry
my $parentPage

= $asset->getLineage(['ancestors'], {
includeOnlyClasses => ['WebGUI::Asset::Wobject::Layout'],
limit => 1,

});

To pull it all together, here are a few more real-world examples of uses of
getLineage.

Get the next five upcoming events from the calendar $calendar
my $comingUp

= $calendar->getLineage(['children'], {
joinClass => 'WebGUI::Asset::Event',
whereClause

=> q{startDate >= CURDATE() and
(startTime IS NULL or startTime >= CURTIME())},

orderByClause => 'startDate, startTime',
limit => 5,

});

Get all the Threads started by the user with userId of '3' ordered by age
my $adminThreads

= $rootAsset->getLineage(['descendants'], {
includeOnlyClasses => ['WebGUI::Asset::Post::Thread'],
whereClause => 'ownerUserId = "3"',
orderByClause => 'creationDate DESC',

});

199

WebGUI Developers Guide

addChild

Just as getLineage is the standard way to get assets from the asset tree,
addChild is the standard way to put assets into the asset tree. addChild will
instantiate the new asset, add it to the database, set the asset's parent to
the current asset, and give you the new asset object, like so:

my $image2c = $article2->addChild($properties);

Using more arguments to addChild, you can specify the assetId of the new
asset, and the revisionDate. This is useful when creating asset installers, or
other times when you decide on an assetId ahead of time, and must make
sure that assetId is used.

Create a new asset with a specific assetId that is shown as
being created 60 seconds ago
my $image2d = $article2->addChild($properties, 'Image2d', time - 60);

Finally, the fourth argument is a hash reference of options. Currently, only a
single option exists, skipAutoCommitWorkflows, but it is very important
when writing new code that requires use of addChild. Without this option, if
the asset you're adding has an auto-commit workflow, a new version tag
will be created. Worse, since the version tag isn't sent through the commit
process until requestAutoCommit is called, the version tag remains open,
showing up in the Version Tags for anyone to join.

For most cases, when using addChild in your own application, you're going
to need to use skipAutoCommitWorkflows.

Add a new post but keep the same working tag
my $post

= $thread->addChild($properties, undef, undef,
{ skipAutoCommitWorkflows => 1 }

);

Notice that you set both the assetId and revisionDate to "undef". This will
cause addChild to generate them automatically, like you want.

200

WebGUI Developers Guide

Rank and Depth

When an asset is created, it's given a parentId, which is the assetId of the
asset's parent, and a lineage, which is the same lineage as the asset's
parent plus an additional six digits. Those six digits are also known as the
asset's rank. As mentioned above, by default, getLineage sorts the assets
it returns by rank, so rank can be important in making sure asset one is
shown before asset two.

To modify an asset's rank, you can use the demote, promote and, if
necessary, the swapRank methods.

Move an asset above it's next-highest-ranked sibling
$asset->promote;

Move an asset below it's next-lowest-ranked sibling
$asset->demote;

Swap two assets in the rank
$asset1->swapRank($asset2->get('lineage'));

These methods move an asset around on the same level of depth, but
sometimes you want to move the asset to another place entirely. To do so,
use the setParent method.

Move $asset to a new parent $parentAsset
$asset->setParent($parentAsset);

In addition to updating the parentId of $asset, setParent also calls
cascadeLineage, which updates the lineage of $asset and all of the
descendants of $asset. This is very important, so be sure to use setParent
when you want to move assets up and down the asset tree.

201

WebGUI Developers Guide

Writing Wobjects
Wobject is short for web object and serves as the plugin type for creating
custom applications for your site in WebGUI. Because wobjects are both
pluggable and true objects, the possibilities of what you can do are nearly
limitless. Applications as simple as a guest book and as complex as
complete Human Resources Information Systems have been created for
WebGUI. The only limiting factor when it comes to what you can
accomplish with wobjects is you.

History

WebGUI has had a pluggable application interface since its inception in
2001. To better understand wobjects and what they are, it's helpful to take
a look back at how wobjects evolved into what they are today.

Up until version 5 of WebGUI, Wobjects were called Widgets. If you have
been using WebGUI since before version 5, it's possible that you might still
have the widget table in your database. To create a new widget for
WebGUI, you basically needed to create a new WebGUI::Widget package,
add a www_view and www_edit method, and then add the widget to
WebGUI's config file, similar to what is still done today.

While they were extremely simple to write (no extended API's existed way
back in the beginning), there was a lot of necessary repetition. Each time
you created a widget you had to basically re-write the edit screen. If you
wanted to add a feature to an existing widget, you had to copy it and all of
its database tables before you could do so. There was nothing you could
do to control the style. Every widget, including the edit page, was wrapped
in the style of the site.

Widgets were not flexible enough to accommodate advanced applications,
and their repetitiveness made the development cycle long and tedious with
a good deal of code copying. WebGUI 5 introduced the wobject, which
replaced widgets and introduced an API for developing applications within
WebGUI. Wobjects solved the problem of repetition by including some
convenience methods for adding the edit form and handling data; however,
it was still limiting in that Wobjects in WebGUI 5 weren't true objects, so
you still needed to fully copy wobjects to make changes. Style handlers
were added which allowed some flexibility when it came to styles; however,
wobjects were still limited in that they had to have a style. You couldn't

202

WebGUI Developers Guide

return raw data, such as RSS feeds.

WebGUI 6 introduced the modern wobject as you know them today.
Wobjects became true objects which allowed for inheritance. Style became
completely flexible, allowing raw data to be returned by an application, and
the API was enhanced to further limit the development cycle by introducing
auto generating forms based off a definition. Wobjects became truly
powerful, capable of performing any task regardless of how complex.

What is a Wobject?

Now that you have a little history about the evolution of wobjects, let's talk
a bit more about what the modern wobject is and what it provides to you,
the developer. Wobjects in WebGUI are simply assets. A full chapter in this
book is dedicated to developing assets. If you have read and understand
that chapter then there is relatively nothing new to learn to develop a
wobject.

So what's the difference then? Why have a whole chapter on writing
wobjects if they are simply assets?

The main difference between assets and wobjects is that wobjects give you
API with convenience methods for handling collateral data and have a built
in style wrapper. What this means is that you don't have to manually look
up the current style of the page and wrap your asset inside it. This is done
automatically for you. So how do you know whether to write an “Asset” or
a “Wobject”? Ask yourself a few questions:

1. Does your asset take on its own “focus”?

Let's digress for a moment and discuss a concept called “Wobject
focus” in WebGUI. Start by imagining a discussion forum on a page
of your WebGUI website called “Discussion” with URL /discussion.
When you go to the discussion page, you see a form within the
current style of your site (you likely have a top banner, maybe left
hand navigation, and a footer) along with any other assets you may
have dropped on to this page. For the sake of argument, let's say
you have a second discussion forum on this page.

Now, imagine you want to view all of the threads within the “General”
topic of the first discussion forum. This is going to take you to a new
url: /discussion/forum1?func=viewThreads;threadId=xxxx. This is the
URL of the wobject. The page which contained both discussion

203

WebGUI Developers Guide

forums loses focus and the wobject, which displays the threads
within the discussion forum you clicked, gains focus. What this
means is that everything else on the page (the second discussion
forum) is no longer displayed. Only the wobject you've clicked on is
displayed. This is most visible when you return to main view of the
wobject. /discussion/forum1?func=view. This will return you to the
main view of the forum; however, the second discussion forum will
not show up on the page. This is because the first discussion forum
still has focus. To see them both, you need to go back to the page
where both of the discussion forums reside, /discussion.

If your wobject gains focus, you will need to wrap it in a style so that
it looks like the rest of the site. Otherwise, users will be confused
when your wobject gains focus as it will look completely different
than the page they were just on. As stated before, wobjects have a
built in style wrapper which automatically inherits from the parent
when users add it to the site.

If you anticipate situations in which your wobject will need to gain
“focus”, you probably want to create a wobject instead of an asset.

2. Is there collateral data associated with your asset?

Let's say you want to build a recipe book asset which allows users
to enter and search for their favorite recipes. As you learned in the
chapter on writing assets, each asset needs to store metadata
associated with it so WebGUI knows how to display various aspects
of it. You would start building this asset much in the same way by
creating a table that had the assetId and revisionDate fields. This
asset, however, needs to have multiple recipes associated with each
instance. In order to do that you are going to need at least one more
database table that stores information about each recipe. This is
what is called collateral data.

If you anticipate needing collateral data, you probably want to create
a wobject instead of an asset.

3. Are there multiple UI components of your asset?

In the recipe asset example above, you are going to need more than
just the asset add/edit and view screens. You are going to need a
screen which allows users to add, edit, view, and remove recipes
from the system. These are separate UI components which you will

204

WebGUI Developers Guide

expose to your users, and therefore require their own templates.

If you anticipate needing multiple UI components, you probably want
to create a wobject instead of an asset.

Getting Started

Since you already know how to develop assets from reading the Assets
chapter, this discussion will dive into a little more of the functional and
technical planning that is necessary when developing a Wobject. For all
intents and purposes, a wobject is a full featured application within
WebGUI which requires planning before you dive into the code. The
planning stage is divided into two parts: the Functional Specification and
the Technical Specification.

Writing a Functional Specification

One of the most important, if not the most important part of designing an
application (especially an application for the web) is to try to anticipate how
your users are going to attempt to use it. Users have some preconceived
notions of how software works. This is what is called the “User Model,” and
it is what you should attempt to identify before writing any piece of
software. The document that describes your vision of the “User Model” is
called a Functional Specification for the software.

Writing a specification is a lot like flossing: you know you should be doing
it, but you never do. Most people will tell you they don't write specifications
because it saves time. That may be true initially, but a bigger problem is
that most developers get an idea and want to run with it before organizing
all of their thoughts.

Let's clear one thing up before going any further. Writing a functional
specification may not be the most enjoyable thing to do, but for any project
that takes longer than a week to code, not writing one will almost certainly
lead to an even less enjoyable practice. The practice of patching up
software that is full of holes.

A functional specification describes how your application will work entirely
from the user's perspective. It doesn't care how it is implemented. It talks
about features and it shows screen shots of every page trying to visually
describe the application and the user's experience. This doesn't need to be
a long document, but it should be long enough to fully express your idea.

205

WebGUI Developers Guide

You also don't need to create flashy graphics. In fact, simply drawing out
the screen on a piece of paper and scanning it would suffice. If you are so
inclined, applications like Microsoft Visio (Windows)® or Omnigraffle

(Mac)® have tools that let you lay out simple forms. Defining the flow of the
user's experience is what is important.

A functional specification should contain the following:

● Description: a brief description of the application, no longer than one
or two small paragraphs. Include the goal of the project and a high
level overview of what the software does.

● User Roles: bullet the various user roles (admins, managers,
approvers) that exist in the application, describing each briefly in one
or two sentences.

● Rules: bullet any rules that must be followed at all times by the
software. For example, “An administrator must approve a document
before it's published to the site.”

● External Processes: briefly describe all interactions with any third
party software. For example, “Data is retrieved from XYZ RSS feed
on yahoo.com.”

● Future Considerations: detail all functionality that will NOT be
included in this release of the application, but may be considered in
the future. This will force you to think about possible stubs you may
want to add for future development.

● Workflow Diagram: provide a workflow diagram of how data moves
through the system.

● Screen Specifications: provide a screen shot of each screen of the
application as you envision it, and briefly describe what actions can
occur. This will not only make it easier to figure out how your
application should be implemented, but it ensures that you don't
leave anything out that you might need.

Writing a Technical Specification

The technical specification describes the internal implementation of the
application. It talks about data structures, relational database models,
algorithms, etc. It sets the parameters for building this piece of software.

206

WebGUI Developers Guide

A Technical Specification should include:

● Entity Relationship Diagram (ERD): provide a graphical
representation of the different database tables and their
relationships. This will help you identify that various components that
need to be created.

● Flow Charts: provide a diagram that shows the different components
of the application and how they fit together. This will allow you to see
a visual representation of your application, making it easier to find
any holes that may need to be filled.

● Method Library: describe any methods you need to create along
with their signatures. This helps you better visualize the entire
application and what needs to be done.

● High Level Pseudocode: for complex ideas, it may be a good idea to
provide some pseudocode that describes how you anticipate things
working. This is useful as it allows you to easily share your ideas with
others and identify shortcomings and pitfalls.

Building Your Wobject

Before beginning, take a look at the following Hello World example. This
illustrates building a wobject at its most basic level, and is a helpful
reference before moving on to a more advanced, step by step, example.

Hello World
package WebGUI::Asset::Wobject::HelloWorld;

$VERSION = "1.0.0";

use strict;
use Tie::IxHash;
use base 'WebGUI::Asset::Wobject';

#---
sub definition {
 my $class = shift;
 my $session = shift;
 my $definition = shift;

207

WebGUI Developers Guide

 tie my %properties, 'Tie::IxHash';
 %properties = ();

 push(@{$definition}, {
 assetName=>"Hello World",
 autoGenerateForms=>1,

tableName=>'HelloWorld',
className=>'WebGUI::Asset::Wobject::HelloWorld',
properties=>\%properties

 });
 return $class->SUPER::definition($session, $definition);
}

#---
sub view {
 my $self = shift;
 my $session = $self->session;

 return "Hello World!";
}

#---
INSTALL / UNINSTALL
#---

use base 'Exporter';
our @EXPORT = qw(install uninstall);
use WebGUI::Session;

#---
sub install {
 my $config = $ARGV[0];
 my $home = $ARGV[1] || "/data/WebGUI";
 unless ($home && $config) {
 die "usage: perl -MWebGUI::Asset::Wobject::HelloWorld -e install
www.example.com.conf\n";
 }
 print "Installing asset.\n";
 my $session = WebGUI::Session->open($home, $config);
 $session->config->addToArray("assets","WebGUI::Asset::Wobject::HelloWorld");
 $session->db->write("create table HelloWorld (
 assetId varchar(22) binary not null,

revisionDate bigint not null,

208

WebGUI Developers Guide

primary key (assetId, revisionDate)
)");
 $session->var->end;
 $session->close;
 print "Done. Please restart Apache.\n";
}

#---
sub uninstall {
 my $config = $ARGV[0];
 my $home = $ARGV[1] || "/data/WebGUI";
 unless ($home && $config) {

die "usage: perl -MWebGUI::Asset::Wobject::HelloWorld -e uninstall
www.example.com.conf\n";
 }
 print "Uninstalling asset.\n";
 my $session = WebGUI::Session->open($home, $config);
 $session->config->deleteFromArray("assets","WebGUI::Asset::Wobject::HelloWorld");
 my $rs = $session->db->read("select assetId from asset where
className='WebGUI::Asset::Wobject::HelloWorld'");
 while (my ($id) = $rs->array) {
 my $asset = WebGUI::Asset->new($session, $id,
"WebGUI::Asset::Wobject::HelloWorld");

$asset->purge if defined $asset;
 }
 $session->db->write("drop table HelloWorld");
 $session->var->end;
 $session->close;
 print "Done. Please restart Apache.\n";
}

1;

Example: Recipe Catalog

Similar to creating a new asset, when creating a new wobject you should
begin with the wobject skeleton available at
/data/WebGUI/lib/WebGUI/Asset/Wobject/_NewWobject.skeleton. The
wobject skeleton contains all of the methods you'll need to get your base
wobject up and running.

Copy the wobject skeleton into a new Perl module that will be your new
wobject. For the purposes of this chapter, create your recipe application

209

WebGUI Developers Guide

allowing users to search for, add, edit, and delete recipes.

cd /data/WebGUI/lib/WebGUI/Asset/Wobject
cp _NewWobject.skeleton RecipeCatalog.pm

Update the first line of code to reflect the name of your wobject package
WebGUI::Asset::Wobject::RecipeCatalog.

As with assets, you now need to build your definition based on the table
structure for your RecipeCatalog asset. This is the exactly same process as
creating the definition for assets as described in the chapter on creating
assets. The database table looks like:

CREATE TABLE RecipeCatalog (
assetId VARCHAR(22) BINARY NOT NULL,
revisionDate BIGINT NOT NULL,
viewTemplateId VARCHAR(22) BINARY NOT NULL,
editRecipeTemplateId VARCHAR(22) BINARY NOT NULL,
viewRecipeTemplateId VARCHAR(22) BINARY NOT NULL,
groupToPost VARCHAR(22) BINARY NOT NULL,
paginateAfter INTEGER DEFAULT '25',

 PRIMARY KEY (assetId,revisionDate)
);

After adding the assetId / revisionDate composite key, create three new
templates. The first template (viewTemplateId) will be used to display a
paginated list of all of the recipes in your database. The second
(editRecipeTemplateId) will be used to create the form for entering new
recipes. Finally, the third (viewRecipeTemplateId) will be used to view
individual recipes.

Additionally, you will notice a groupToPost field. With this field you will let
your administrators choose to differentiate between those who can view
the recipes and those who can post them. You will also notice a
paginateAfter field in which you will let your administrator designate how
many recipes will be displayed before they are paginated.

From this table you can create your definition which looks like this (assume
for this example that no internationalization is necessary):

210

WebGUI Developers Guide

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
tie my %properties, 'Tie::IxHash';

 %properties = (
 paginateAfter => {
 fieldType =>"integer",
 defaultValue =>25,
 tab =>"properties",
 hoverHelp =>"Enter the number of recipes per page",
 label =>"Paginate Recipes After",
 },
 viewTemplateId => {
 fieldType =>"template",
 defaultValue =>'RecipeCatalog000000001',
 tab =>"display",
 namespace =>"RecipeCatalog/view",
 hoverHelp =>"View template for the recipe catalog",
 label =>"View Recipe Catalog Template",
 },
 editRecipeTemplateId => {
 fieldType =>"template",
 defaultValue =>'RecipeCatalog000000002',
 tab =>"display",
 namespace =>"RecipeCatalog/edit",
 hoverHelp =>"View template for the recipe catalog",
 label =>"Edit Recipe Template",
 },
 viewRecipeTemplateId => {
 fieldType =>"template",
 defaultValue =>'RecipeCatalog000000003',
 tab =>"display",
 namespace =>"RecipeCatalog/viewRecipe",
 hoverHelp =>"Template for viewing recipes",

 label =>"View Recipe Template",
 },
 groupToPost => {
 fieldType =>"group",
 defaultValue =>3,
 tab =>"security",
 hoverHelp =>"Choose the group to post recipes",

211

WebGUI Developers Guide

 label =>"Group To Post",
 }

);

push(@{$definition}, {
assetName =>"Recipe Catalog",
autoGenerateForms =>1,
tableName =>'RecipeCatalog',
className =>'WebGUI::Asset::Wobject::RecipeCatalog',
properties =>\%properties

 });
 return $class->SUPER::definition($session, $definition);
}

Notice a few things. All of the default
template variables are hardcoded. This is
because the default templates will be
included with the installation method of the
asset. Each template also has a separate
namespace. This ensures that the right
templates will always be chosen and you won't wind up with a page that
has the wrong template for the variables returned.

Installing Your Wobject

Once the definition is created, it is useful to get your wobject on your
WebGUI instance so you can see progress as you develop. It is unrealistic
to think you can build an entire application without ever looking at it, so
getting it on the site is a crucial early step.

As with developing assets, _NewWobject.skeleton comes with an install
method which performs all of the installation necessary for your asset, such
as adding the wobject to the config file and creating all of the wobject
database tables.

There is one additional step you should add to your install method that is
not included in the _NewWobject.skeleton class, which is importing all of
the default templates for your asset. This not
only saves the user the headache of having
to manually update your templates, but it
also ensures that you are able to hard code
the default template values into your

212

Remember, asset ID's must
be exactly 22 characters long.

See Appendix 1 for more
information about Advanced
Install Scripts.

WebGUI Developers Guide

definition and database tables as you saw earlier in the chapter.

To get a visual working environment for building your application, update
the install method of your asset and run the script. Once this is done, you
should be able to turn admin on in WebGUI and see your asset in the New
Content menu of the Admin Bar.

This is a good time to note a few things. First, the installation method is
error prone. It is wise to also update the uninstall method in case you make
mistakes. That way you can uninstall and start over. Second, installing this
early in the application process typically means that you are going to have
to make changes. Even though you did some preliminary design, there is
usually something that comes up during the development phase that you
didn't think of and requires changes to templates and database tables.

There are two ways to approach this problem. The first is simply to embed
everything in your install scripts and any time you have to make a change
to a database table or template, uninstall the application and reinstall it.
This will ensure that your scripts continue to work and that you haven't
made any syntax errors that might cause it to fail. The drawback is that
every time you make a mistake that affects a template or the database you
lose any test data you had. Given that during the development process you
will be changing templates on a regular basis, this solution can be tedious
and time consuming.

A better way to manage the installation process is to move all of the
templates outside of the script and create an additional executable method
which simply modifies all of the templates. This way, after the initial install
you can simply run your new method if you make a change to the template.
Additionally, your templates (which are mostly HTML) now exist in separate
files making them easier to edit and able to be part of any versioning
system you use. A cookbook chapter at the end of this book further
describes how to do this. For the rest of this chapter, simply assume that
your install script was generated through the development process and is
now complete, thus it will not be demonstrated here.

sub install {
my $config = $ARGV[0];
my $home = $ARGV[1] || "/data/WebGUI";
my $className = "WebGUI::Asset::Wobject::RecipeCatalog";
unless ($home && $config) {

die "usage: Perl -M$className -e install yoursite.conf\n";
}

213

WebGUI Developers Guide

print "Installing asset.\n";
my $session = WebGUI::Session->open($home, $config);
#Add wobject to config file
$session->config->addToArray("assets",$className);
#Create database tables
$session->db->write("CREATE TABLE RecipeCatalog (

assetId VARCHAR(22) BINARY NOT NULL,
revisionDate BIGINT NOT NULL,
viewTemplateId VARCHAR(22) BINARY NOT NULL,
editRecipeTemplateId VARCHAR(22) BINARY NOT NULL,
viewRecipeTemplateId VARCHAR(22) BINARY NOT NULL,
groupToPost VARCHAR(22) BINARY NOT NULL,
paginateAfter INTEGER DEFAULT '25',
PRIMARY KEY (assetId,revisionDate)

)");
 $session->db->write("CREATE TABLE RecipeCatalog_recipe (

recipeId VARCHAR(22) BINARY NOT NULL,
assetId VARCHAR(22) BINARY NOT NULL,
title VARCHAR(100) NOT NULL,
description TEXT NOT NULL,
servings VARCHAR(30) NOT NULL,
ingredients TEXT NOT NULL,
directions TEXT NOT NULL,
PRIMARY KEY (recipeId)

)");
 ### Create a folder asset to store the default templates

my $importNode = WebGUI::Asset->getImportNode($session);
my $newFolder = $importNode->addChild({

 className => "WebGUI::Asset::Wobject::Folder",
title => "Recipe Catalog",
menuTitle => "Recipe Catalog",
url => "recipe_catalog_folder",
groupIdView => "3"

},"RecipeCatalogFolder001");
 #Create the templates

#Recipe Catalog View Template
my $recipeCatalogTmpl = q|
<tmpl_if session.var.adminOn>

<p><tmpl_var controls></p>
</tmpl_if>
<tmpl_if displayTitle>

<h2><tmpl_var title></h2>
</tmpl_if>

214

WebGUI Developers Guide

 <tmpl_if error_msg>
 <div class="error"><tmpl_var error_msg></div>

</tmpl_if>
<tmpl_if canPost>

<a href="<tmpl_var add_recipe>">add a recipe
</tmpl_if>
<tmpl_if has_recipes>

<table border="1" cellpadding="3" cellspacing="0">
<tbody>

<tr>
<th>Recipe Name</th>
<tmpl_if canPost>
<th> </th>
<th> </th>
</tmpl_if>

</tr>
<tmpl_loop recipe_loop>
<tr>

<td>
<a href="<tmpl_var view_recipe>">

<tmpl_var recipeName>

</td>
<tmpl_if canPost>
<td>

<a href="<tmpl_var edit_recipe>">edit
</td>
<td>

<a href="<tmpl_var delete_recipe>">delete
</td>
</tmpl_if>

</tr>
 </tmpl_loop>

</tbody>
</table>
<tmpl_if pagination.pageCount.isMultiple>

<tmpl_unless pagination.isFirstPage>
<tmpl_var pagination.firstPage>

</tmpl_unless>
<tmpl_var pagination.previousPage>
<tmpl_var pagination.nextPage>
<tmpl_unless pagination.isLastPage>

<tmpl_var pagination.lastPage>

215

WebGUI Developers Guide

</tmpl_unless>
</tmpl_if>

<tmpl_else>
<table border="1" cellpadding="3" cellspacing="0">

<tbody>
<tr>

<td>No Recipes Have Been Entered.</td>
</tr>

</tbody>
</table>

</tmpl_if>
|;
#Recipe Edit Template Code
my $recipeEditTmpl = q|
<tmpl_if error_msg>

<div class="error"><tmpl_var error_msg></div>
</tmpl_if>

<h3>Edit Recipe</h3>
<tmpl_var form_header>
<tmpl_var form_hidden>
<table border="0" cellpadding="3" cellspacing="0">

<tbody>
<tr>

<td>Recipe Name</td>
<td><tmpl_var form_title></td>

</tr>
<tr>

<td>Description</td>
<td><tmpl_var form_description></td>

</tr>
<tr>

<td>Servings</td>
<td><tmpl_var form_servings></td>

</tr>
<tr>

<td>Ingredients</td>
<td><tmpl_var form_ingredients></td>

</tr>
<tr>

<td>Directions</td>
<td><tmpl_var form_directions></td>

</tr>
<tr>

216

WebGUI Developers Guide

<td colspan="2" align="right"><tmpl_var form_submit></td>
</tr>

</tbody>
</table>
<tmpl_var form_footer>
|;
#Recipe View Template Code
my $recipeViewTmpl = q|
<h3><tmpl_var recipe_name></h3>

<table border="0" cellpadding="3" cellspacing="0">

<tbody>
<tr>

<td>Description</td>
<td><tmpl_var recipe_description></td>

</tr>
<tr>

<td>Servings</td>
<td><tmpl_var recipe_servings></td>

</tr>
<tr>

<td>Ingredients</td>
<td><tmpl_var recipe_ingredients></td>

</tr>
<tr>

<td>Directions</td>
<td><tmpl_var recipe_directions></td>

</tr>
</tbody>

</table>

<a href="<tmpl_var home_url>">back to recipe catalog
|;
#Add the templates to the folder
$newFolder->addChild({

className =>"WebGUI::Asset::Template",
ownerUserId =>'3',
groupIdView =>'7',
groupIdEdit =>'12',
title =>"Default Recipe Catalog Template",
menuTitle =>"Default Recipe Catalog Template",
url =>"default_recipe_catalog_template",
namespace =>"RecipeCatalog/view",

217

WebGUI Developers Guide

template =>$recipeCatalogTmpl,
},'RecipeCatalog000000001'

);
 $newFolder->addChild({

className=>"WebGUI::Asset::Template",
ownerUserId=>'3',
groupIdView=>'7',
groupIdEdit=>'12',
title=>"Default Edit Recipe Template",
menuTitle=>"Default Edit Recipe Template",
url=>"default_edit_recipe_template",
namespace=>"RecipeCatalog/edit",
template=>$recipeEditTmpl,
},'RecipeCatalog000000002'

);
 $newFolder->addChild({

className=>"WebGUI::Asset::Template",
ownerUserId=>'3',
groupIdView=>'7',
groupIdEdit=>'12',
title=>"Default View Recipe Template",
menuTitle=>"Default View Recipe Template",
url=>"default_view_recipe_template",
namespace=>"RecipeCatalog/viewRecipe",
template=>$recipeViewTmpl,
},'RecipeCatalog000000003'
);

#Commit the working version tag
my $workingTag = WebGUI::VersionTag->getWorking($session);
my $workingTagId = $workingTag->getId;
my $tag = WebGUI::VersionTag->new($session,$workingTagId);
if (defined $tag) {

print "Committing tag\n";
$tag->set({comments=>"Folder created by Asset Install Process"});
$tag->requestCommit;

}
$session->var->end;
$session->close;
print "Done. Please restart Apache.\n";

}

The following collateral table has been added for storing recipes (will

218

WebGUI Developers Guide

discuss this more a bit later in the chapter).

CREATE TABLE RecipeCatalog_recipe (
recipeId VARCHAR(22) BINARY NOT NULL,

assetId VARCHAR(22) BINARY NOT NULL,
title VARCHAR(100) NOT NULL,

description TEXT NOT NULL,
servings VARCHAR(30) NOT NULL,
ingredients TEXT NOT NULL,
directions TEXT NOT NULL,

 PRIMARY KEY (recipeId)
);

Additionally, a folder has been created and added to the import node.
WebGUI's import node can easily become cluttered with templates if you
are not responsible about where you put things. For that reason, it's
important to create a folder to store the content related to your asset. Not
only does it reduce clutter, but it makes it easier to find asset related
material.

A few changes have also been made to the uninstall script:

sub uninstall {
 my $config = $ARGV[0];

my $home = $ARGV[1] || "/data/WebGUI";
my $className = "WebGUI::Asset::Wobject::RecipeCatalog";
unless ($home && $config) {

die "usage: Perl -M$className -e uninstall yoursite.conf\n";
}
print "Uninstalling asset.\n";
my $session = WebGUI::Session->open($home, $config);
#Delete wobject from config file
$session->config->deleteFromArray("assets",$className);
#Delete all assets and default templates
my $rs = $session->db->read(qq{

select
assetId

from
asset

where
className='$className'
or assetId like 'RecipeCatalog%'

219

WebGUI Developers Guide

});
while (my ($id) = $rs->array) {

my $asset = WebGUI::Asset->new($session, $id, $className);
$asset->purge if defined $asset;

}
#Drop asset related tables
$session->db->write("drop table if exists RecipeCatalog");
$session->db->write("drop table if exists RecipeCatalog_recipe");
$session->var->end;
$session->close;
print "Done. Please restart Apache.\n";

}

Notice that you are additionally getting rid of your default templates by
adding the “or assetId like 'RecipeCatalog%'” clause to the query retrieving
all of the assets to purge. Additionally, you are dropping the collateral table
as well as the main wobject table.

One additional note. In order to display the wobject properly, you need to
update the prepareView method to prepare the correct default template. In
the wobject skeleton, it assumes a template variable of tempalteId.

sub prepareView {
my $self = shift;
$self->SUPER::prepareView();
my $template = WebGUI::Asset::Template->new(

 $self->session,
 $self->get("viewTemplateId")
);

$template->prepare;
$self->{_viewTemplate} = $template;

}

If you fail to do this, WebGUI will complain that it can't instantiate your
template.

Building Your Wobject

Once the base wobject is installed you should be able to see it in the New
Content menu of the Admin Bar and add it to the site. The edit screen
should work correctly, and you should see whatever default template you

220

WebGUI Developers Guide

have for the view when you save. Since this is exactly the same process
that is described in the chapter on building assets, you are simply going to
point out a few additional things in the view method.

sub view {
my $self = shift;
my $session = $self->session;

 my $db = $session->db;
my $user = $session->user;

 my $var = $self->get;
 my $canPost = $user->isInGroup($self->get("groupToPost"));
 #Create a new instance of a paginator
 my $p = WebGUI::Paginator->new(
 $session,
 $self->getUrl,
 $self->get("paginateAfter"),
);
 #Create a query to retrieve all of the recipes
 my $sql = q|
 SELECT
 *
 FROM
 RecipeCatalog_recipe
 WHERE
 assetId=?
 ORDER BY
 title ASC
 |;

#Pass the query and arguments to the paginator
 $p->setDataByQuery($sql,undef,undef,[$self->getId]);
 #Use the Paginator to get back an array ref of the current page of data
 my $pageData = $p->getPageData;
 #Create an array to store the recipes
 my @recipeLoop = ();
 foreach my $row (@{$pageData}) {
 #Create a hashref to store individual loop data
 my $recipeHash = {};
 #Store all relevant recipe data
 $recipeHash->{'recipeName' } = $row->{title};
 $recipeHash->{'recipeDesc' } = $row->{description};
 $recipeHash->{'servings' } = $row->{servings};
 $recipeHash->{'ingredients'} = $row->{ingredients};
 $recipeHash->{'direction' } = $row->{directions};

221

WebGUI Developers Guide

 #Create a link to view the recipe
 $recipeHash->{'view_recipe'} = $self->getUrl(
 "func=viewRecipe;recipeId=".$row->{recipeId}
);
 #Create edit and delete links

 if($canPost) {
$recipeHash->{'edit_recipe' } = $self->getUrl(

 "func=editRecipe;recipeId=".$row->{recipeId}
);

 $recipeHash->{'delete_recipe'} = $self->getUrl(
 "func=deleteRecipe;recipeId=".$row->{recipeId}
);
 }
 #Push the hashref onto the recipe loop
 push(@recipeLoop,$recipeHash);
 }
 #Create a template variable for the recipe loop

$var->{'recipe_loop'} = \@recipeLoop;
#Append pagination template variables

 $p->appendTemplateVars($var);
#Create a template variable in case there is no data
$var->{'has_recipes'} = (scalar(@recipeLoop) > 0);
#Show a link to add a recipe if the user can post new recipes
if($canPost) {

$var->{'canPost' } = "true";
 $var->{'add_recipe'} = $self->getUrl("func=editRecipe");

}
 #Return the template to the www_view method

return $self->processTemplate($var, undef, $self->{_viewTemplate});
}

In the first few lines set up some helper variables for things contained in
session like the database and user object. Then, create a hash reference,
$var, in which to put all of your template variables. Calling $self->get
initially populates the hash reference with all of the superclass asset data.

Then, instantiate a Paginator object to automate pagination of your asset.
The Paginator API is extremely useful when building assets that list data.
Not only does it provide you a simple means to allow users to page through
large data sets, but it does so efficiently.

Create a new Paginator instance by calling the constructor and passing it

222

WebGUI Developers Guide

the current session object, the URL that you wish to have paginated (the
link to your data set), and the number of data items you wish to have per
page.

Once you've created a Paginator instance, you can then pass either a
query (most efficient) or an array of data (least efficient) to paginate. The
Paginator will calculate the number of items to return, as well as the current
page, and return you only the relevant data.

Additionally, the Paginator has methods for easily appending template
variables to your template for displaying pagination. For more information
about the Paginator see the WebGUI::Paginator API.

Calling $p->getPageData returns a full page of data which you then need to
export to your HTML Template. Because you don't know exactly how many
rows of data will be returned at any given time, you need to return it as a
loop which can be iterated over inside the template. Do this by creating an
array reference of hash references. Each hash reference represents a single
iteration in the loop and contains the same keys as the previous iteration.

When you assign the array reference to a template variable you create a
loop which can be referenced from within your template using the
<tmpl_loop> structure.

Finally, return the template to the www_view method for the wobject. The
www_view method contains the logic to wrap your template in the page
style and does this for you automatically.

www_ methods

By prefacing a method with www_, you tell WebGUI that this method
should be able to be called from the website. You've seen two such
methods so far, www_view and www_edit, in the chapter on writing assets.
WebGUI calls these methods automatically, so it might not be clear how
this functionality works. To call any www_ method in WebGUI, you simply
add func=methodName to the end of a URL where methodName is
whatever follows www_. For instance, if a method called www_showDetails
was created in the wobject, it would be called by simply appending
func=showDetails to the end of the asset's URL:
http://www.mysite.com/myasset?func=showDetails. This tells WebGUI that
you don't wish to see the default view of the wobject, but rather the
showDetails page.

223

WebGUI Developers Guide

Whenever you create a wobject, you will likely need to create your own
www_ methods for various tasks you would like your users to do. For
instance, in the recipe application, in order to create a new recipe, you are
going to need to provide your users a form for adding new recipes. You can
accomplish this task by creating a www_editRecipe method.

 sub www_editRecipe {
 my $self = shift;
 my $session = $self->session;

my $db = $session->db;
my $user = $session->user;
my $form = $session->form;
my $privilege = $session->privilege;

 my $var = $self->get;
my $canPost = $user->isInGroup($self->get("groupToPost"));

 #Create an error template variable if an error happened
$var->{'error_msg'} = shift;
#Only allow those who can post recipes to post.
return $privilege->insufficient() unless ($canPost);
#Get the collateral row if one exists
my $recipe = $self->getCollateral(

"RecipeCatalog_recipe",
"recipeId",
$form->get("recipeId")

);
#Create the form elements
$var->{'form_header'} = WebGUI::Form::formHeader($session,{

action=>$self->getUrl()
});
$var->{'form_hidden'} = WebGUI::Form::Hidden($session,{

name =>"func",
value =>"editRecipeSave"

});
$var->{'form_hidden'} .= WebGUI::Form::Hidden($session,{

name =>"recipeId",
value =>$recipe->{recipeId}

});
$var->{'form_title'} = WebGUI::Form::Text($session,{

name =>"title",
value =>$form->get("title") || $recipe->{title},
maxLength => 100

});
my $description

224

WebGUI Developers Guide

= $form->process("description","HTMLArea") || $recipe->{description};
$var->{'form_description'} = WebGUI::Form::HTMLArea($session,{

name =>"description",
value =>$description,

});
$var->{'form_servings'} = WebGUI::Form::Text($session,{

name =>"servings",
value =>$form->get("servings") || $recipe->{servings}

});
my $ingredients

= $form->process("ingredients","HTMLArea") || $recipe->{ingredients};
$var->{'form_ingredients'} = WebGUI::Form::HTMLArea($session,{

name =>"ingredients",
value =>$ingredients,

});
my $directions

= $form->process("directions","HTMLArea") || $recipe->{directions};
$var->{'form_directions'} = WebGUI::Form::HTMLArea($session,{

name =>"directions",
value =>$directions,

});
$var->{'form_submit'} = WebGUI::Form::submit($session);
$var->{'form_footer'} = WebGUI::Form::formFooter($session);
#return the template wrapped in the page style.
my $templateId = $self->getValue("editRecipeTemplateId");
my $template = $self->processTemplate($var,$templateId);
return $self->processStyle($template);

}

Notice that this looks very similar to your view method. There are a few
differences that are important to note. First of all, it is important to
understand that you are fully responsible for security on your own pages.
WebGUI takes care of security when it comes to viewing the wobject, but if
you are going to create your own web accessible methods, you need to
make sure you set security accordingly. You'll notice that the example uses
WebGUI's privilege API to block anyone that isn't in the groupToPost group
set in the wobject properties from seeing the page.

The other major difference is that you cannot simply return $self-
>processTemplate() if you want the contents of your template to be
wrapped in the site's style. Remember earlier in the chapter it was said that
one of the drawbacks to legacy widgets and wobjects was that they didn't

225

WebGUI Developers Guide

enable you to send raw content back to the browser. This is where you
have that power. WebGUI's wobject API has a method which wraps the
style around the template for you called processStyle():

$wobject->processStyle($template)

Keep in mind that processStyle will not process the template for you. You
must do this prior to calling this method. If you do want to return raw
content (such as an RSS feed), you simply omit the style wrapper and
return the results of $self->processTemplate (which comes from the Asset
API).

Another wobject API method used in the www_editRecipe method is the
getCollateral method. getCollateral is the first of several methods which
make it easy to deal with collateral data in your wobjects:

my $row = $wobject->getCollateral(collateralTable,keyName,keyValue)

This method returns one row of data from the collateral table you specify
by looking for the key which has the value passed in. Some of the other
collateral methods will be covered later in this chapter. Here are a few that
will not be discussed in detail.

● $wobject->moveCollateralDown(collateralTable, keyName,
keyValue); This method reorders content that is sequenced in the
database switching its position with the next row.

● $wobject->moveCollateralUp(collateralTable,keyName,keyValue)
This method reorders content that is sequenced in the database
switching it's position with the previous row.

● $wobject->reorderCollateral(collateralTable,keyName) When working
with sequential data, it is sometimes necessary to fill gaps in the
sequencing that might occur from removing data. This method does
this for you automatically.

Finally, notice that in the form you have hidden a field called func which has
a value of editRecipeSave. Since this is a form post, you need another
method which processes your data and puts it into the database. Do this
by creating another www_ method and including a hidden func variable
which tells WebGUI where to send the post content.

226

WebGUI Developers Guide

sub www_editRecipeSave {
 my $self = shift;
 my $session = $self->session;
 my $db = $session->db;

my $user = $session->user;
 my $form = $session->form;
my $privilege = $session->privilege;
my $var = $self->get;
my $canPost = $user->isInGroup($self->get("groupToPost"));
#Only allow those who can post recipes to post.
return $privilege->insufficient() unless ($canPost);
#Build a list of properties based on form elements passed in
my $props = {};
$props->{'recipeId' } = $form->process("recipeId","hidden");
$props->{'title' } = $form->process("title","text");
$props->{'description'} = $form->process("description","HTMLArea");
$props->{'servings' } = $form->process("servings","text");
$props->{'ingredients'} = $form->process("ingredients","HTMLArea");
$props->{'directions' } = $form->process("directions","HTMLArea");
#Do some error checking. Return the user to
if($props->{'title'} eq "") {

return $self->www_editRecipe(
 "All recipes must have a title"

);
}
if($props->{'description'} eq "") {

return $self->www_editRecipe(
"All recipes must have a description"

);
}

 if($props->{'servings'} eq "") {
return $self->www_editRecipe(

"All recipes must have the number of servings"
);

}
if($props->{'ingredients'} eq "") {

return $self->www_editRecipe(
"All recipes must list ingredients"

);
}
if($props->{'directions'} eq "") {

return $self->www_editRecipe(
"All recipes must have cooking directions"

227

WebGUI Developers Guide

);
}

#Add or update the database with the recipe data
$self->setCollateral(

"RecipeCatalog_recipe",
"recipeId",
$props,
0,
1

);
#Return the default view of the wobject.
return "";

}

Like before, this method begins by checking privileges. A common mistake
for new developers is to add privilege checks to the view pages but not to
the submit pages, making it possible for users to post content to pages
they don't have access to.

Also note that another collateral method, setCollateral, is used. This
method is invaluable when it comes to writing wobjects because it saves
you a lot of steps. Normally, when you write software that has to insert and
update to a database table, you wind up with code that first has to check
to make sure that the content doesn't already exist in the database and
then decide whether to perform an insert or an update. The setCollateral
method of WebGUI's wobject API does this for you. Additionally, it
automates adding assetIds and sequence numbers to your collateral
tables:

$wobject->setCollateral(collateralTable, keyName, properties, sequenceNumber, assetId)

This method accepts a hash reference of properties to be inserted or
updated in a database table. If a value is found in the properties hash
reference for keyName, it updates all columns in the database matching the
key of the properties hash reference with the associated value. If no
keyValue is found, or the keyValue is the string “new,” it will insert all of the
data in the properties hash reference. This is a huge benefit as any
developer who has dealt with this before can attest.

Additionally, setCollateral will automatically sequence tables with the

228

WebGUI Developers Guide

column name sequenceNumber. You must be careful to exactly name your
column this to take advantage of auto sequencing. Finally, setCollateral will
automatically update an assetId column if you specify. The column name
must be “assetId” for this to work properly.

One final thing to note about this method is that it returns an empty string.
This tells WebGUI to return the default view for the asset.

Container Wobjects

This is a good opportunity to digress and talk briefly again about Wobject
design. As you've seen, WebGUI's wobject API provides you with methods
for dealing with collateral data. However, there are many times when your
collateral data needs to be indexed for searching, versioned, or maintained
in a tree like structure. When you run into these roadblocks, it is a good
idea to think about creating a container wobject.

A container wobject does not contain any collateral data. Instead, it is a
parent for other assets for which it is responsible for displaying. WebGUI is
full of container assets. The most notable ones being the Collaboration
System, which is responsible for displaying Thread and Post assets; the
Calendar asset, which is responsible for displaying Event assets; and the
Page Layout asset, which is responsible for displaying all of its children.

This works well in situations described above because WebGUI
automatically indexes every asset. What this means is that if you are writing
a wobject in which you need to search for collateral data, by creating a new
asset type for that asset and a container wobject, you won't have to create
a search. You will simply use WebGUI's default search to get the job done.

Also, you may need to version your data. This can be tedious and time
consuming if you attempt to do this manually within the wobject. Instead, if
you create a new asset type and container wobject, any changes made to
your sub-assets will automatically be versioned by WebGUI.

This is a very powerful method employed for developing wobjects of this
type. The recipe asset could very well have taken a different route in the
design phase and become a container wobject which displays Recipe
Assets.

229

WebGUI Developers Guide

Finishing Up

Now that your users can view, create, and edit recipes, you need to polish
off the wobject by adding methods to let the users view and delete recipes.
Finally, you need to update the purge and duplicate methods to account for
your collateral data.

Start by creating a www_veiwRecipes method which allows users to view
the recipes that have been entered:

sub www_viewRecipe {
my $self = shift;
my $session = $self->session;
my $db = $session->db;
my $user = $session->user;
my $form = $session->form;
my $privilege = $session->privilege;
my $var = $self->get;
#Only allow those who can view the wobject to view the recipes.
return $privilege->insufficient() unless ($self->canView);
my $recipeId = $form->get("recipeId");
#Get the collateral row if one exists.
my $recipe = $self->getCollateral(

"RecipeCatalog_recipe",
"recipeId",
$form->get("recipeId")

);
#Don't let users try to view recipes that don't exist
return "" if($recipe->{recipeId} eq "new");
#Create template variables for the recipe data
$var->{'recipe_name' } = $recipe->{title};
$var->{'recipe_description'} = $recipe->{description};
$var->{'recipe_servings' } = $recipe->{servings};
$var->{'recipe_ingredients'} = $recipe->{ingredients};
$var->{'recipe_directions' } = $recipe->{directions};
#Create a url for a "back" button
$var->{'home_url'} = $self->getUrl();
#return the template wrapped in the page style.
my $templateId = $self->getValue("viewRecipeTemplateId");

my $template = $self->processTemplate($var,$templateId);
return $self->processStyle($template);

}

230

WebGUI Developers Guide

This method looks very similar to the others. You'll note that one slight
change has been made in that you are checking the view privileges of the
wobject to determine whether or not a user can view the recipe. This differs
from the the previous methods which were looking to see if a user could
post. Also note that you use the getCollateral and processStyle methods
from the wobject superclass again.

Next, add a way for users who can post to delete recipes. You could
certainly extend this to allow only admins or users who own the posts to
delete the records, but for the purposes of this example simply allow
anyone who can post to delete any recipe.

sub www_deleteRecipe {
my $self = shift;
my $session = $self->session;
my $user = $session->user;
my $form = $session->form;
my $privilege = $session->privilege;
my $var = $self->get;
my $canPost = $user->isInGroup($self->get("groupToPost"));
#Only allow those who can post recipes to post.
return $privilege->insufficient() unless ($canPost);
my $recipeId = $form->get("recipeId");
#Don't let users try to delete recipes that don't exist
return "" unless ($recipeId);

my $message = "Are you sure you want to delete this recipe?";
my $yesUrl = $self->getUrl(

"func=deleteRecipeConfirm;recipeId=$recipeId"
);
return $self->processStyle($self->confirm($message,$yesUrl));

}

This method uses another wobject API method used for displaying a
confirmation page to the user.

$html = $wobject->confirm($message,$yesUrl,$noUrl)

This method returns a standard, pre-configured confirmation screen which
allows users to change their minds if they accidentally delete the wrong
item. Passing in a message, along with a URL to go to if the user would like

231

WebGUI Developers Guide

to continue deleting, and a URL to go to if a mistake was made returns
standard HTML used throughout WebGUI for confirming user intentions. If
you do not supply a noUrl, the users will be taken back to the main view of
the application if they make a mistake.

The example above indicates that if the user is purposely deleting the
content, he/she should be directed to the www_deleteRecipeConfirm page
to which you pass the unique key of the table in which recipes are stored.

sub www_deleteRecipeConfirm {
my $self = shift;
my $session = $self->session;
my $user = $session->user;
my $form = $session->form;
my $privilege = $session->privilege;
my $var = $self->get;
my $canPost = $user->isInGroup($self->get("groupToPost"));
 #Only allow those who can post recipes to post.
return $privilege->insufficient() unless ($canPost);
my $recipeId = $form->get("recipeId");

 #Don't let users try to delete recipes that don't exist
return "" unless ($recipeId);
$self->deleteCollateral(

"RecipeCatalog_recipe",
"recipeId",
$recipeId

);

 return "";
}

This method uses the final wobject API method discussed in this chapter.

$wobject->deleteCollateral(collateralTable,keyName,keyValue);

This method deletes a single row from the collateral table where keyName
matches keyValue.

The last thing you need to do for this wobject to be complete is to update
the purge and duplicate methods that were discussed in the chapter on
writing assets. These methods are slightly different for wobjects as you
need to account for collateral data.

232

WebGUI Developers Guide

sub purge {
my $self = shift;
my $db = $self->session->db;
my $sql = q{

DELETE
FROM

RecipeCatalog_recipe
WHERE

assetId=?
};]
$db->write($sql,[$self->getId]);
return $self->SUPER::purge;

}

When purge is called on an instance of a wobject, it needs to remove all
collateral data associated with the wobject. This goes back to your design.
A common mistake is to forget that multiple instances of wobjects can exist
across the site. It is important to make sure that all collateral is related to its
asset index so you can properly purge as well as duplicate.

sub duplicate {
my $self = shift;
my $db = $self->session->db;
my $newAsset = $self->SUPER::duplicate(@_);
my $sql = q{

SELECT
*

FROM
RecipeCatalog_recipe

WHERE
assetId=?

};
my $sth = $db->read($sql,[$self->getId]);
while (my $row = $sth->hashRef) {

$row->{recipeId} = "new";
$row->{assetId } = $newAsset->getId;
$newAsset->setCollateral(

"RecipeCatalog_recipe",
"recipeId",
$row,
0,
1

233

WebGUI Developers Guide

);
}
return $newAsset;

}

The duplicate method selects all of the data related to the original asset,
and copies it using the setCollateral method of the new asset. This ensures
that all the recipes, as well as the asset itself, are copied.

Wobject Inheritance

Finally, it's worth some time to talk about wobject inheritance. As said at
the beginning of the chapter, there are times where you want an existing
asset to work just a bit differently. In cases like this, you can inherit all of
the properties of the existing wobject and simply override the parts you
want to change.

Say, for example, that you would like to export a few more template
variables in the view of your recipe wobject. Rather than starting from
scratch or copying the recipe wobject exactly, you can easily extend the
wobject by using it as your base instead of the wobject class.

use base 'WebGUI::Asset::Wobject::RecipeCatalog';

Since the RecipeCatalog wobject is a wobject, your new wobject is one
also. Like every wobject, you will need to create a database table that has
the assetId / revisionDate composite key as well as a definition. The good
news is, if you aren't changing any of the properties, your definition is going
to be rather short.

Finally, to change the view, simply copy the view from the RecipeCatalog
wobject into the new one and make the changes that are necessary. No
collateral tables would be necessary as all of the recipes would be stored in
the original RecipeCatalog tables. Instead of all the work that went into
creating the new asset, overriding two methods allows you to create a
brand new asset with its own functionality.

234

WebGUI Developers Guide

Internationalization
A major feature of WebGUI is the
Internationalization (i18n) of the interface. By
storing English strings in a data structure
with a key, you can use the same key to
store strings in Dutch, German, Spanish,
and other languages. Using a combination of
WebGUI::International objects in your asset, and ^International(); macros in
your templates, you can make easily translatable interfaces. This example
will make an i18n for the InfoCard asset created in the Assets chapter.

To use internationalization in your code, first make an i18n namespace in
lib/WebGUI/i18n/English/. You can call yours Asset_InfoCard to follow with
convention (assets start with Asset_, form controls start with Form_,
macros with Macro_, etc...).

 package WebGUI::i18n::English::Asset_InfoCard;
 use strict;
 our $I18N = {
 'assetName' => {
 message => q{InfoCard},
 lastUpdated=> 0,
 context => q{The name of the InfoCard asset},
 },
 };
 1;

I18n modules are just Perl modules with a single “our” variable called
$I18N. This variable is a hash reference of hash references, as outlined
above. The key will be used to access your message in line 5, which is the
internationalized text. I18n also provides for keeping track of the time
lastUpdated, which is used by the i18n utility at http://i18n.webgui.org, and
the context in line 7, which is how the message will be used. Sometimes
the translator won't be able to figure out what he's translating from the
message, which is why the context can be useful.

Once you have a shell of an i18n module, you need a way to get at it from
your asset. For this, make an i18n method in your asset class.

235

The examples in this chapter
reference the asset written in
the Assets chapter.

WebGUI Developers Guide

 sub i18n {

 my $class = shift;
 my $session= shift;
 return WebGUI::International->new($session, "Asset_InfoCard");
 }

Notice that this is a class method, because you'll need to be able to use it
from other class methods. It takes a single argument, a WebGUI::Session
object, and returns a WebGUI::International object with your i18n
namespace. Now that you have a way to get at your i18n, you need to use
it.

To start, revisit the definition. Remember your label and hoverHelp keys?
Now you can internationalize them instead of hard-coding English, like so:

 sub definition {
 my $class = shift;
 my $session= shift;
 my $definition = shift;
 my $i18n = __PACKAGE__->i18n($session);

 tie my %properties, 'Tie::IxHash', (
 templateIdView => {
 tab => 'display',
 fieldType => 'template',
 label => $i18n->get('property templateIdView
label'),
 hoverHelp => $i18n->get('property templateIdView
description'),
 namespace => 'InfoCard',
 },

First, get your WebGUI::International object. Then, in place of literal strings,
use the get method to get the appropriate string from your Asset_InfoCard
i18n file (lines 11-12). Notice the key used. Property templateIdView label is
descriptive and follows the general<->specific rules outlined by Perl Best
Practices. “property” because it's an Asset property, templateIdView'is the
property, and “label” is what's being displayed. Now, when these keys are
alphabetized (by the http://i18n.webgui.org application) they will follow a
logical pattern and be easier to translate.

Once you've changed all of your labels and hoverHelp to be i18n values,

236

WebGUI Developers Guide

you can go back and add your English translation to your i18n module.

 'assetName' => {
 message => q{InfoCard},
 lastUpdated => 0,
 context => q{The name of the InfoCard asset},
 },
 'property templateIdView label' => {
 message => q{View Template},
 lastUpdated => 0,
 context => q{Label for asset property},
 },
 'property templateIdView description' => {
 message => q{The template to view the InfoCard},
 lastUpdated => 0,
 context => q{Description of asset property},
 },

Now you can do this for other English text inside of your module, and
you're left with only your template having plain English labels. To make
those translatable, you can use the International macro inside of your
template.

The International macro allows you to perform i18n lookups anywhere a
macro can be used. Like the WebGUI::International->get method, the
International macro is quite easy to use.

<h2><tmpl_var name></h2>
<dl>
 <dt>^International('property name label','Asset_InfoCard');</dt>
 <dd><tmpl_var name></dd>

 <dt>^International('property address label','Asset_InfoCard');</dt>
 <dd><tmpl_var address>
 <tmpl_var city>, <tmpl_var state></dd>
</dl>

Notice in the sample template above, international labels are reused from
your asset's edit form. This is a good idea in most cases, but sometimes
you'll want to use a different label. Take your address above. In the
InfoCard edit form, Address refers only to the person's street address, but
in your template, you bunch the entire address together: street, city, and

237

WebGUI Developers Guide

state. So instead, give it a different i18n label.

 <dt>^International('template address label', 'Asset_InfoCard');</dt>
 <dd><tmpl_var address>
 <tmpl_var city>, <tmpl_var state></dd>

And, of course, add your new label to your English i18n translation.

 'template address label' => {
 message => q{Full Address},
 lastUpdated => 0,
 context => q{Label for the address, city, and state in the template.},
 },

Placeholders and i18n

Most i18n values just work in all languages. You can translate words,
phrases, or paragraphs and things come out just fine. Sometimes, however,
the order of things must be reversed. This is most readily apparent when
translating labels for numbers. How can you make i18n for, “Viewing results
1-10 of 30 total,” when those numbers are given in template variables?

Perl already has a method of dealing with such things: formats. Since
formats are just strings with special parts (placeholders), you can store the
format as an i18n value and use Perl's sprintf() function to replace the
placeholders with the correct values.

my $currentPage = “1-10”;
my $total = “50”;
sprintf “Viewing results %s of %s total”, $currentPage, $totalResults;

Now, the string, “Viewing results %s of %s
total,” will be translated into, “Viewing
results 1-10 of 50 total.” All you need to do
is move the string out to one of your i18n
modules.

If you're in a template and you need to fill in a placeholder, all you need to
do is pass it as another argument to the ^International; macro.

^International(“search title”, “Asset_Search”, “1-10”, “50”);
<!-- or more usefully -->
^International(“search title”, “Asset_Search”, <tmpl_var currentPage>, <tmpl_var total>);

238

More information on how to
use formats and placeholders
is available using perldoc -f
sprintf.

WebGUI Developers Guide

Help
In addition to internationalization, WebGUI also provides an online help
system for template variables, asset configuration, or anything else. This is
done with an i18n-like module in the lib/WebGUI/Help folder (with the same
name as your i18n namespace).

package WebGUI::Help::Asset_InfoCard;
use strict;
our $HELP = {
 'howToUse' => {
 title => 'help howToUse title',
 body => 'help howToUse body',
 },
};
1; # I can handle the truth

This help file seems a little abstract, there's no help to be found! What you
do have, however, are keys to the i18n file so that Help can be
internationalized as well.

First, set up your package to have the same name under WebGUI::Help as
your i18n has under WebGUI::i18n::English. Then, make your $HELP
structure, whose keys are references to the article. Inside the article
reference, specify a title and body. The values of these two keys point to
entries in the i18n file. This is all that is required to have a very basic help
article. Once you add your keys to your i18n file, you can visit WebGUI's
Help pane in the Admin Console and see your new article listed.

Template Variables

There are some help topics that are so common you have better ways to
make help files for them. One of these topics is Template Variables.

By using the “variables” key in your article definition, you can specify a list
of template variables available to a template, like so:

 'templateIdView' => {
 title => 'help templateIdView title',
 body => 'help templateIdView body',
 variables => [

239

WebGUI Developers Guide

 {
 name => 'name',
 description => 'helpvar name',
 required => 0,
 },
 {
 name => 'address',
 description => 'helpvar address',
 },
],
 },

Here, a new help article is defined, templateIdView. You have the normal
title and body keys, but you also have a new key: variables.

“variables” is an array reference of hash references that define each of the
template variables available at that scope. For the InfoCard asset, you have
at least two variables available “name” and “address”. The “name” key is
the exact name of the template variable, what the template designer would
use inside the <tmpl_var> tag. The “description” key is another i18n key for
a description of the variable. Finally, the optional “required” key can be set
to true if the variable absolutely must be inside the template for the asset to
work.

If the variable is a loop, it can contain a second level of “variables”, like so:

 {
 name => “card_loop”,
 description => 'helpvar card_loop',
 variables => [
 {
 name => 'card',
 description => 'helpvar card',
 },
],
 },

These variables will show up with an extra level of indentation, to show
they are available from inside the loop “card_loop.”

240

WebGUI Developers Guide

Related and ISA

A lot of assets are related to each other in some way. At the very least, they
all inherit from the same base class, so share a portion of the same
template variables. You can define these relationships in two ways:
“related” and “isa”.

“isa” defines a standard parent-child relationship. By saying an article “isa”
another article, you inherit all those template variables, and don't have to
redefine them in your own article.

 'templateIdView' => {
 title => 'help templateIdView title',
 body => 'help templateIdView body',
 isa => [
 {
 namespace => 'Asset',
 tag => 'asset template asset variables',
 },
],
 # variables
 },

“isa” is an array reference of hash references, much like “variables.” Inside
the hash reference is the “namespace” of the parent article, and the “tag”
of the parent article, which is to say the key in the $HELP hashref. So, given
the above isa, you could look in lib/WebGUI/Help/Asset.pm to find the
“asset template asset variables” article that you're inheriting from.

“related” simply defines a relationship between two articles and provides a
link to the related article. It's defined in the same way as “isa”, an array
reference of hash references.

241

WebGUI Developers Guide

'templateIdView' => {
 title => 'help templateIdView title',
 body => 'help templateIdView body',
 related => [
 {
 namespace => 'Asset',
 tag => 'asset template asset variables',
 },
],
 # variables
 },

Now, the “asset template asset variables” article in the “Asset” namespace
will show up under the “Related” section.

242

WebGUI Developers Guide

Writing SKU's
This chapter shows how to write SKU's, subclasses of
WebGUI::Asset::Sku, which are assets that tie into the WebGUI Shop.
Creating your own SKU's provides your customers a custom shopping
experience.

WebGUI Shop comes with many SKU's that you can use as examples to
guide you in writing your own SKU's. The Event Manager has four SKU's of
its own: EMSTicket, EMSBadge, EMSRibbon, and EMSToken. In addition,
there are the Product and Subscription SKU's, which can be used to
generically sell any kind of products or recurring memberships. There are
also some specialty SKU's, specifically the Donation and Flat Discount
Coupon SKU's. It's wise to examine these SKU's before developing your
own to get a feel for the effort involved, and to give you ideas on how to
build your own.

API Highlights

The rich SKU API provides the power and flexibility needed to develop your
own subclasses.

addToCart()

The most important method in all SKU's is the addToCart() method,
because this is where the transaction begins. In some cases you may not
need to modify the addToCart() method for your SKU, but in most cases
you will probably either modify it or, at the very least, write a wrapper
around it that calls it.

The main instance where you would want to modify the addToCart()
method is if you have some book keeping functions to perform. For
example, if this is a product with an inventory, you'll likely want to subtract
the item out of inventory so that it can't be oversold.

The base addToCart() method accepts a hash reference of configuration
properties and then calls the methods necessary to put this product into
the cart. The configuration properties are used if you need to keep track of
how the product is configured. For example, if it's a donation, you could
put the donation amount in the properties. If it's a configurable product, like
a computer, then you could store all of those configuration options in there.

243

WebGUI Developers Guide

Whenever the cart, or other parts of the shop, interact with this SKU, it will
restore this SKU with these options using the applyOptions() and
getOptions() methods.

The addToCart() method is generally never called by any WebGUI
subsystems. It's there for you to write a wrapper around and call it yourself.
Generally, you might create a www_addToCart() method that would be
called by a user clicking on a button. How that happens is up to you.

Event Handlers

The SKU provides a series of event handlers which help manage the
purchase process. There are some that are specific to the type of SKU that
you're building. Others are useful in all SKU's: onCompletePurchase(),
onRefund(), and onRemoveFromCart().

● onCompletePurchase() is called when a transaction has finalized and
payment has been made. Use onCompletePurchase() to handle
book keeping tasks like giving privileges, accounting for inventory,
etc.

● onRefund() is called when a shop manager clicks the Refund button
in the transaction manager. Use onRefund() to take away privileges,
restock inventory that was previously purchased, etc.

● onRemoveFromCart() is called when an item is removed from the
shopping cart before purchase. Use onRemoveFromCart() to restock
items that you took out of inventory with the addToCart() method.

The Numbers

In a sale it all comes down to the numbers, so there are several methods
that help you manage the numbers for each SKU.

● The getMaxAllowedInCart() method should be overridden in the
event you're selling a unique item (for instance a ticket that has been
customized to a user).

● The getPrice() method should be overridden to return the price of the
SKU, and should calculate the price in the case of a configurable
product.

● The getQuantityAvailable() method should be overridden if there are

244

WebGUI Developers Guide

a limited number of the SKU available for sale.

Display Helpers

There are a couple of methods that should be overridden to help visually
integrate your SKU with the Shop.

● getConfiguredTitle() should return a descriptive title, such as “Red
XL T-Shirt” rather than just “T-Shirt”.

● getThumbnailUrl() should return the URL to a thumbnail of a picture
of the SKU.

SKU's as Products

The most common archetype of a SKU is a product: a physical good set up
for sale. There is a generic Product SKU, that comes with WebGUI, that can
handle the needs of most users. However, there are many scenarios in
which using a SKU to do just the right job makes sense. That's where you
come in to write a new product SKU.

Special Methods

There are a few special methods that you'll need to know when writing this
type of SKU.

● The getWeight() method should be overridden to reflect the item's
shipping weight.

● The isShippingRequired() method should be overridden to return 1 if
the good is non-digital (a book rather than a PDF), or if the item will
be picked up rather than shipped (like will-call tickets at a box
office).

● The onAdjustQuantityInCart() method is an event handler, which is
called when the user updates the quantity of an item in the cart. Use
onAdjustQuanityInCart() to adjust inventory levels so that you don't
over-sell an item.

Book Example

This shows how to write a SKU as a product archetype through the

245

WebGUI Developers Guide

example of selling a book. Books have several properties that are unique to
each book. A normal Product SKU could do the job, but not as well as a
SKU written specifically for selling books. This example uses the special
properties of ISBN, Author, and Edition.

As with any asset, start by creating the definition(). Add the author, ISBN,
and edition properties, as well as the weight and price of the book.

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
my %properties;
tie %properties, 'Tie::IxHash';
%properties = (

isbn => {
tab => "properties",
fieldType => "text",
defaultValue => undef,
label => 'ISBN',
hoverHelp => 'The International Standard Book Number.',
},

author => {
tab => "properties",
fieldType => "text",
defaultValue => undef,
label => 'Author',
hoverHelp => 'Author\'s name or pen name.',
},

edition => {
tab => "properties",
fieldType => "text",
defaultValue => 'First Edition',
label => 'Edition',
hoverHelp => 'The printing number or name of the book.',
},

price => {
tab => "shop",
fieldType => "float",
defaultValue => 0,
label => 'Price',
hoverHelp => 'The amount this book sells for.',
},

246

WebGUI Developers Guide

weight => {
tab => "shop",
fieldType => "float",
defaultValue => 0,
label => 'Weight',
hoverHelp => 'How much in lbs does this book weigh?',
},

);
push(@{$definition}, {

assetName => 'Book',
icon => 'assets.gif',
autoGenerateForms => 1,
tableName => 'Book',
className => 'WebGUI::Asset::Sku::Book',
properties => \%properties

});
return $class->SUPER::definition($session, $definition);

}

Because you're building a product archetype, fill out the getPrice() and
getWeight() methods. Note that the price formatted is returned using
sprintf. This saves you from having to do it everywhere that you want to
display the price.

sub getPrice {
my $self = shift;
return sprintf "%.2f", $self->get('price');

}

sub getWeight {
my $self = shift;
return $self->get('weight');

}

Then, define your view() method. Normally, you would want to template
this, but to keep it simple this example has left out that step. Instead, all the
properties are displayed using a standard HTML Form.

sub view {
my $self = shift;
my $f = WebGUI::HTMLForm->new($self->session, action=>$self->getUrl);
$f->readOnly(

247

WebGUI Developers Guide

label => 'Title',
value => $self->get('title'),
);

$f->readOnly(
label => 'Edition',
value => $self->get('edition'),
);

$f->readOnly(
label => 'Description',
value => $self->get('description'),
);

$f->readOnly(
label => 'Author',
value => $self->get('author'),
);

$f->readOnly(
label => 'ISBN',
value => $self->get('isbn'),
);

$f->readOnly(
label => 'Price',
value => $self->getPrice,
);

$f->hidden(
name => "func",
value => "buy",
);

$f->submit(value => 'Add To Cart');
return $f->print;

}

In view() you defined a reference to a www_buy() method, so you must also
create that. This is the wrapper that will call addToCart() for you.

sub www_buy {
my $self = shift;
return $self->session->privilege->noAccess() unless ($self->canView);
$self->addToCart;
return $self->getParent->www_view;

}

248

WebGUI Developers Guide

Note that you want www_buy() to follow the same view privileges as all
other assets. If you can't view it, you shouldn't be able to buy it. In this way
you can make some books available to only certain groups of purchasers.

That gives you a final class that looks similar to the one below. This is also
uploaded to the add-ons area of webgui.org, so you can work directly from
this code if you plan on making something similar.

package WebGUI::Asset::Sku::Book;
use strict;
use Tie::IxHash;
use base 'WebGUI::Asset::Sku';
use WebGUI::Utility;
use WebGUI::HTMLForm;

=head1 NAME
Package WebGUI::Asset::Sku::Book
=head1 DESCRIPTION
This sku allows you to sell books on your site with complete information.
=head1 SYNOPSIS
use WebGUI::Asset::Sku::Book;

=head1 METHODS
These methods are available from this class:
=cut

#---
=head2 definition (session, definition)
Adds isbn, author, and edition fields.

=head3 session

=head3 definition

A hash reference passed in from a subclass definition.
=cut

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
my %properties;
tie %properties, 'Tie::IxHash';

249

WebGUI Developers Guide

%properties = (
isbn => {

tab => "properties",
fieldType => "text",
defaultValue => undef,
label => 'ISBN',
hoverHelp => 'The International Standard Book Number.',
},

author => {
tab => "properties",
fieldType => "text",
defaultValue => undef,
label => 'Author',
hoverHelp => 'Author\'s name or pen name.',
},

edition => {
tab => "properties",
fieldType => "text",
defaultValue => 'First Edition',
label => 'Edition',
hoverHelp => 'The printing number or name of the book.',
},

price => {
tab => "shop",
fieldType => "float",
defaultValue => 0,
label => 'Price',
hoverHelp => 'The amount this book sells for.',
},

weight => {
tab => "shop",
fieldType => "float",
defaultValue => 0,
label => 'Weight',
hoverHelp => 'How much in lbs does this book weigh?',
},

);
push(@{$definition}, {

assetName => 'Book',
icon => 'assets.gif',
autoGenerateForms => 1,
tableName => 'Book',
className => 'WebGUI::Asset::Sku::Book',

250

WebGUI Developers Guide

properties => \%properties
});
return $class->SUPER::definition($session, $definition);

}

#---

=head2 getPrice ()

Returns the value of the price field formatted as currency.

=cut

sub getPrice {
my $self = shift;
return sprintf "%.2f", $self->get('price');

}

#---

=head2 getWeight ()

Returns the value of the price field formatted as currency.

=cut

sub getWeight {
my $self = shift;
return $self->get('weight');

}

#---

=head2 indexContent ()

Making private. See WebGUI::Asset::indexContent() for additonal details.

=cut

sub indexContent {
my $self = shift;
my $indexer = $self->SUPER::indexContent;
$indexer->addKeywords($self->get('author'), $self->get('isbn'), $self->get('edition'));

251

WebGUI Developers Guide

}

#---
=head2 view ()

method called by the container www_view method.

=cut

sub view {
my $self = shift;
my $f = WebGUI::HTMLForm->new($self->session, action=>$self->getUrl);
$f->readOnly(

label => 'Title',
value => $self->get('title'),
);

$f->readOnly(
label => 'Edition',
value => $self->get('edition'),
);

$f->readOnly(
label => 'Description',
value => $self->get('description'),
);

$f->readOnly(
label => 'Author',
value => $self->get('author'),
);

$f->readOnly(
label => 'ISBN',
value => $self->get('isbn'),
);

$f->readOnly(
label => 'Price',
value => $self->getPrice,
);

$f->hidden(
name => "func",
value => "buy",
);

$f->submit(value => 'Add To Cart');
return $f->print;

}

252

WebGUI Developers Guide

#---

=head2 www_buy ()

Adds the book to the cart.

=cut

sub www_buy {
my $self = shift;
return $self->session->privilege->noAccess() unless ($self->canView);
$self->addToCart;
return $self->getParent->www_view;

}

1;

Recurring SKU's

Recurring SKU's are often thought of as subscriptions or memberships.
You pay every so often to see a support board, to read some articles about
your favorite sports team, or to pay your dues to a club. In many of these
cases the Subscription SKU that comes with WebGUI will serve the
purpose perfectly. However, you may want to collect some data along with
the subscription, so you'd create your own recurring SKU.

Special Methods

There are a few special methods you need to be aware of when writing a
recurring SKU archetype.

● The getRecurInterval() method should be overridden so that the
Shop knows how often to process the recurring transaction.

● The isRecurring() method should be overridden to return 1 so that
the Shop knows this is a recurring SKU.

● The onCancelRecurring() method is an event handler, which is called
when a user or administrator cancels a recurring transaction. Use
this to make privilege adjustments, send out emails, etc. However,
be careful not to take away a user's privileges too early. This cancels
the next transaction, but if you're working with a subscription, and

253

WebGUI Developers Guide

that subscription has not already expired, then the user needs to
maintain its current privileges, and lose them when the next
transaction fires.

Association Dues Example

In clubs and associations, it's often necessary to collect dues and
members' information. You may want to collect these simultaneously the
first time, and then allow your members to update their data periodically
thereafter. A great way to achieve this is to display a form of the data you
want to capture with the add to cart button. For this example, data is
collected and placed in the user's profile. That way the user can use the
profile system to update the data going forward.

Start with the definition() method, which defines the memberGroupId (the
group that holds your members) and the price fields.

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
my %properties;
tie %properties, 'Tie::IxHash';
%properties = (

memberGroupId => {
tab => "properties",
fieldType => "group",
defaultValue => '3',
label => 'Member Group',
hoverHelp => 'The group holding your membership.',
},

price => {
tab => "shop",
fieldType => "float",
defaultValue => 0,
label => 'Price',
hoverHelp => 'The annual fee for this membership.',
},

);
push(@{$definition}, {

assetName => 'Member Dues',
icon => 'assets.gif',
autoGenerateForms => 1,

254

WebGUI Developers Guide

tableName => 'MemberDues',
className => 'WebGUI::Asset::Sku::MemberDues',
properties => \%properties

});
return $class->SUPER::definition($session, $definition);

}

Then, you have to publish your price.

sub getPrice {
my $self = shift;
return sprintf "%.2f", $self->get('price');

}

Because this is a recurring SKU, you have to override the appropriate
method to let the Shop know that. By defining isRecurring to return 1,
getMaxAllowedInCart() will automatically also return 1. In this case, you're
building a SKU that recurs annually, so you can hard code
getRecurInterval(). In some cases you may want to make this a select box
property so that the user can select the recur interval.

sub getRecurInterval {
 return 'Yearly';
}

sub isRecurring {
return 1;

}

You need to set up the privileges on each recurrence, but you only want to
update the membership data on the first recurrence. Do that with the
onCompletePurchase() method.

sub onCompletePurchase {
my ($self, $item) = @_;
my $transaction = $item->transaction;
my $group = WebGUI::Group->new($self->session, $self->get('memberGroupId'));
$group->addUsers([$transaction->get('userId')],60*60*24*365);
if ($transaction->isFirst) { # this is the first instance of this transaction

my $user = WebGUI::User->new($self->session, $transaction->get('userId'));
my $options = $self->getOptions;

255

WebGUI Developers Guide

$user->profileField('email', $options->{email});
$user->profileField('firstName', $options->{firstName});
$user->profileField('lastName', $options->{lastName});
$user->profileField('workPhone', $options->{workPhone});

}
}

Then, you can build out the view() method with your registration form.

sub view {
my $self = shift;
my $user = $self->session->user;
my $f = WebGUI::HTMLForm->new($self->session, action=>$self->getUrl);
$f->readOnly(

label => 'Price',
value => $self->getPrice,
);

$f->hidden(
name => "func",
value => "buy",
);

$f->text(
name => 'firstName',
defaultValue => $user->profileField('firstName'),
label => 'First Name',
);

$f->text(
name => 'lastName',
defaultValue => $user->profileField('lastName'),
label => 'Last Name',
);

$f->email(
name => 'email',
defaultValue => $user->profileField('email'),
label => 'Email Address',
);

$f->phone(
name => 'workPhone',
defaultValue => $user->profileField('workPhone'),
label => 'Telephone Number',
);

$f->submit(value => 'Add To Cart');

256

WebGUI Developers Guide

my $output = q{
<h3>}.$self->getTitle.q{</h3>
<p>}.$self->get('description').q{</p>
<p>}.$f->print.q{</p>

};
return $output;

}

Just like in the Book product, you have to create the www_buy() method,
but this time you have some configuration options to store with the item.
Note the use of that in the addToCart() method.

sub www_buy {
my $self = shift;
return $self->session->privilege->noAccess() unless ($self->canView);
my $form = $self->session->form;
$self->addToCart({

workPhone => $form->get('workPhone','phone'),
email => $form->get('email','email'),
firstName => $form->get('firstName','text'),
lastName => $form->get('lastName','text'),
});

return $self->getParent->www_view;
}

All of the methods together give you an asset that looks like this:

package WebGUI::Asset::Sku::MemberDues;

use strict;
use Tie::IxHash;
use base 'WebGUI::Asset::Sku';
use WebGUI::Utility;
use WebGUI::HTMLForm;
use WebGUI::Group;

=head1 NAME

Package WebGUI::Asset::Sku::MemberDues

=head1 DESCRIPTION

257

WebGUI Developers Guide

This sku allows you to register new members to your organization.

=head1 SYNOPSIS

use WebGUI::Asset::Sku::MemberDues;

=head1 METHODS

These methods are available from this class:

=cut

#---

=head2 definition (session, definition)

Adds memberGroupId and price fields.

=head3 session

=head3 definition

A hash reference passed in from a subclass definition.

=cut

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
my %properties;
tie %properties, 'Tie::IxHash';
%properties = (

memberGroupId => {
tab => "properties",
fieldType => "group",
defaultValue => '3',
label => 'Member Group',
hoverHelp => 'The group holding your membership.',
},

price => {

258

WebGUI Developers Guide

tab => "shop",
fieldType => "float",
defaultValue => 0,
label => 'Price',
hoverHelp => 'The annual fee for this membership.',
},

);
push(@{$definition}, {

assetName => 'Member Dues',
icon => 'assets.gif',
autoGenerateForms => 1,
tableName => 'MemberDues',
className => 'WebGUI::Asset::Sku::MemberDues',
properties => \%properties

});
return $class->SUPER::definition($session, $definition);

}

#---

=head2 getPrice ()

Returns the value of the price field formatted as currency.

=cut

sub getPrice {
my $self = shift;
return sprintf "%.2f", $self->get('price');

}

#---

=head2 getRecurInterval ()

Returns 'Yearly'.

=cut

sub getRecurInterval {
 return 'Yearly';
}

259

WebGUI Developers Guide

#---

=head2 isRecurring ()

Returns 1.

=cut

sub isRecurring {
return 1;

}

#---

=head2 onCompletePurchase (item)

Adds the user to the member group and if it's the first time, applies the fields to the profile.

=cut

sub onCompletePurchase {
my ($self, $item) = @_;
my $transaction = $item->transaction;
my $group = WebGUI::Group->new($self->session, $self->get('memberGroupId'));
$group->addUsers([$transaction->get('userId')],60*60*24*365);
if ($transaction->isFirst) { # this is the first instance of this transaction

my $user = WebGUI::User->new($self->session, $transaction->get('userId'));
my $options = $self->getOptions;
$user->profileField('email', $options->{email});
$user->profileField('firstName', $options->{firstName});
$user->profileField('lastName', $options->{lastName});
$user->profileField('workPhone', $options->{workPhone});

}
}

#---
=head2 view ()

method called by the container www_view method.

=cut

sub view {

260

WebGUI Developers Guide

my $self = shift;
my $user = $self->session->user;
my $f = WebGUI::HTMLForm->new($self->session, action=>$self->getUrl);
$f->readOnly(

label => 'Price',
value => $self->getPrice,
);

$f->hidden(
name => "func",
value => "buy",
);

$f->text(
name => 'firstName',
defaultValue => $user->profileField('firstName'),
label => 'First Name',
);

$f->text(
name => 'lastName',
defaultValue => $user->profileField('lastName'),
label => 'Last Name',
);

$f->email(
name => 'email',
defaultValue => $user->profileField('email'),
label => 'Email Address',
);

$f->phone(
name => 'workPhone',
defaultValue => $user->profileField('workPhone'),
label => 'Telephone Number',
);

$f->submit(value => 'Add To Cart');
my $output = q{

<h3>}.$self->getTitle.q{</h3>
<p>}.$self->get('description').q{</p>
<p>}.$f->print.q{</p>

};
return $output;

}

#---

=head2 www_buy ()

261

WebGUI Developers Guide

Adds the book to the cart.

=cut

sub www_buy {
my $self = shift;
return $self->session->privilege->noAccess() unless ($self->canView);
my $form = $self->session->form;
$self->addToCart({

workPhone => $form->get('workPhone','phone'),
email => $form->get('email','email'),
firstName => $form->get('firstName','text'),
lastName => $form->get('lastName','text'),
});

return $self->getParent->www_view;
}

1;

SKU's as Coupons

Another powerful aspect of SKU's is that they know what else is in the cart
and can adjust the price accordingly. This allows SKU's to be used as
coupons. For example, you might detect that the user has placed an order
for 10 packs of tube socks in the cart. You just happen to be running a
special on tube socks, which gives the user a 20% discount if s/he buys 5
or more packages. Your coupon can look at the cart, determine if the user
has met the criteria, and then return a negative price, thus creating a
discount.

Special Methods

There are a couple of methods you should be aware of when creating a
SKU as coupon archetype.

● The getCart() method gives you a reference to the shopping cart
(WebGUI::Shop::Cart) so that you can see what else is in the cart, to
make your judgments about discounts to give.

● You also need to override isCoupon() to return a 1, because some
coupons may want to know if the user has other coupons in the cart,
and only allow one coupon per cart.

262

WebGUI Developers Guide

Member Discount Example

Let's say that you have an online shop, which sells training materials for
realtors, and that you also run a realtor association from your web site. You
may want to give a discount to all the realtors that also belong to your
association. So, create a coupon that your members can add to their carts
that gives them their association discount.

Similar to the Member Dues example, start out your definition() method
with a memberGroupId property. This time, instead of price, you have a
discount field.

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
my %properties;
tie %properties, 'Tie::IxHash';
%properties = (

memberGroupId => {
tab => "properties",
fieldType => "group",
defaultValue => '3',
label => 'Member Group',
hoverHelp => 'The group holding your membership.',
},

discount => {
tab => "shop",
fieldType => "integer",
defaultValue => 10,
label => 'Percentage Discount',
hoverHelp => 'The amount of discount in percent.',
},

);
push(@{$definition}, {

assetName => 'Member Discount',
icon => 'assets.gif',
autoGenerateForms => 1,
tableName => 'MemberDiscount',
className => 'WebGUI::Asset::Sku::MemberDiscount',
properties => \%properties

});
return $class->SUPER::definition($session, $definition);

}

263

WebGUI Developers Guide

With the coupon archetype most of the work happens in the getPrice()
method. Only give the discount if the user is a member of your group. Also
note that when checking the items in the cart you skip yourself. If you
didn't do this you would create an infinite loop.

sub getPrice {
my $self = shift;
my $discount = 0;
if ($self->session->user->isInGroup($self->get('memberGroupId'))) {

foreach my $item (@{$self->getCart->getItems}) {
next if ($item->get('assetId') eq $self->getId); # prevent infinite loop
$discount += $item->sku->getPrice * $item->get('quantity') * $self-

>get('discount') * -1 / 100;
}

}
return sprintf "%.2f", $discount;

}

Because this is a coupon you have to tell the Shop that.

sub isCoupon {
return 1;

}

And your view() method looks very simple this time.

sub view {
my $self = shift;
my $f = WebGUI::HTMLForm->new($self->session, action=>$self->getUrl);
$f->hidden(

name => "func",
value => "addToCart",
);

$f->submit(value => 'Add To Cart');
my $output = q{

<h3>}.$self->getTitle.q{</h3>
<p>}.$self->get('description').q{</p>
<p>}.$f->print.q{</p>

};
return $output;

}

264

WebGUI Developers Guide

But the www_addToCart() method looks pretty similar to the www_buy()
method in the Book example.

sub www_addToCart {
my $self = shift;
return $self->session->privilege->noAccess() unless ($self->canView);
$self->addToCart;
return $self->getParent->www_view;

}

If you put all that together, you get an asset that looks similar to this:

package WebGUI::Asset::Sku::MemberDiscount;

use strict;
use Tie::IxHash;
use base 'WebGUI::Asset::Sku';
use WebGUI::Utility;
use WebGUI::HTMLForm;

=head1 NAME

Package WebGUI::Asset::Sku::MemberDiscount

=head1 DESCRIPTION

This sku gives members of a specific group a discount.

=head1 SYNOPSIS

use WebGUI::Asset::Sku::MemberDiscount;

=head1 METHODS

These methods are available from this class:

=cut

#---

265

WebGUI Developers Guide

=head2 definition (session, definition)

Adds memberGroupId and discount fields.

=head3 session

=head3 definition

A hash reference passed in from a subclass definition.

=cut

sub definition {
my $class = shift;
my $session = shift;
my $definition = shift;
my %properties;
tie %properties, 'Tie::IxHash';
%properties = (

memberGroupId => {
tab => "properties",
fieldType => "group",
defaultValue => '3',
label => 'Member Group',
hoverHelp => 'The group holding your membership.',
},

discount => {
tab => "shop",
fieldType => "integer",
defaultValue => 10,
label => 'Percentage Discount',
hoverHelp => 'The amount of discount in percent.',
},

);
push(@{$definition}, {

assetName => 'Member Discount',
icon => 'assets.gif',
autoGenerateForms => 1,
tableName => 'MemberDiscount',
className => 'WebGUI::Asset::Sku::MemberDiscount',
properties => \%properties

});
return $class->SUPER::definition($session, $definition);

266

WebGUI Developers Guide

}

#---

=head2 getPrice ()

Returns the discount formatted as currency.

=cut

sub getPrice {
my $self = shift;
my $discount = 0;
if ($self->session->user->isInGroup($self->get('memberGroupId'))) {

foreach my $item (@{$self->getCart->getItems}) {
next if ($item->get('assetId') eq $self->getId); # prevent infinite loop
$discount += $item->sku->getPrice * $item->get('quantity') * $self-

>get('discount') * -1 / 100;
}

}
return sprintf "%.2f", $discount;

}

#---

=head2 isCoupon ()

Returns 1.

=cut

sub isCoupon {
return 1;

}

#---

=head2 view ()

method called by the container www_view method.

=cut

267

WebGUI Developers Guide

sub view {
my $self = shift;
my $f = WebGUI::HTMLForm->new($self->session, action=>$self->getUrl);
$f->hidden(

name => "func",
value => "addToCart",
);

$f->submit(value => 'Add To Cart');
my $output = q{

<h3>}.$self->getTitle.q{</h3>
<p>}.$self->get('description').q{</p>
<p>}.$f->print.q{</p>

};
return $output;

}

#---

=head2 www_addToCart ()

Adds the coupon to the cart.

=cut

sub www_addToCart {
my $self = shift;
return $self->session->privilege->noAccess() unless ($self->canView);
$self->addToCart;
return $self->getParent->www_view;

}

1;

268

WebGUI Developers Guide

Writing Payment Drivers
Payment drivers are plugins to WebGUI Shop that accept payment for an
order. They may tie in to a traditional credit card payment gateway, or an e-
check service, or to a payment service like Pay Pal or Google Checkout, or
even to a custom billing system. No matter what they connect to, the idea
is the same: verify and accept payment for an order purchased through
WebGUI shop.

API Highlights

WebGUI comes with two payment drivers. The first, Cash, is good for point
of sale type orders. The other is iTransact, which is a typical traditional
credit card payment gateway service. Both are great reference material that
you should have a look at and take the time to understand before you start
writing your own payment driver. When you are ready to write your own
payment driver, there are several parts of the API you should be aware of,
and that's what this section is about.

The Master Classes

Before you start writing your own payment driver subclass, check out
WebGUI::Shop::Pay and WebGUI::Shop::PayDriver. Pay is the management
interface for all PayDrivers. PayDriver is the master class that you'll be
subclassing to create your own.

Pay hands off web requests to the PayDrivers. It does this through its
www_do() method. Along the URL it looks like:

/home?shop=pay;method=do;driverId=XXXXX;do=someMethod

Note the bolded “someMethod” part of the URL. That refers to a
www_someMethod() method in your PayDriver subclass. This allows you
to build web accessible content through your payment methods, and use
that to integrate your payment module with any payment gateway you want
to over HTTP.

269

WebGUI Developers Guide

PayDriver Basics

There are a few methods you're going to need to know in order to write
your own payment driver.

The first is the definition() method. If you've written an asset or workflow
activity then you'll be familiar with how this works. In definition() you specify
the properties of the driver and its human readable name.

You'll need to override the getButton() method and return an HTML button
that the user will click on the select this payment method. This is generally
the entrance point into a series of www_ methods that you'll create.
However, for external payment systems like PayPal, this may redirect the
user to the external system.

You'll then need to override the processPayment() method, which will be
called by the processTransaction() method. The processPayment() method
should actually perform the payment request to the payment gateway. This
needs to be an atomic (pass/fail) type of transaction; either the whole thing
succeeds or the whole thing fails.

Recurring Methods

If your payment gateway can be used to handle recurring payments (most
can't), then there are a few additional methods you'll need to be aware of.

You'll need to override the cancelRecurringPayment() method, which
should make a call to the payment gateway requesting that the recurring
transaction be terminated. Like processPayment() this request must be
atomic.

You'll also need to override the handlesRecurring() method and make it
return 1. This way WebGUI Shop knows this driver is capable of handling
recurring payments.

Karma Payment Example

This example creates a payment gateway that uses Karma, instead of
money, to pay for goods. This is not only an interesting concept, but it
requires nothing other than WebGUI to use it. This means you'll be able to
test it without getting involved with some external payment gateway
service, which can be a daunting task if you haven't done it before.

270

WebGUI Developers Guide

First, create your definition() method, where you'll define a special property
used as a currency conversion ratio. In other words, how many points of
karma does it take to purchase an item worth $1.

sub definition {
 my $class = shift;
 my $session = shift;
 my $definition = shift;

 tie my %fields, 'Tie::IxHash';

 %fields = (
 conversionRatio => {
 fieldType => 'integer',
 label => 'Conversion Ratio',
 hoverHelp => 'The amount of karma it takes to equal 1 of the shop\'s currency
(dollars, yen, euros, etc)',
 defaultValue => 500,
 subtext => 'karma : 1 currency'
 },
);

 push @{ $definition }, {
 name => 'Karma',
 properties => \%fields,
 };

 return $class->SUPER::definition($session, $definition);
}

Now, define the getButton() method. Note the use of getDoFormTags(),
which is just a helper that adds the shop, method, do, and payId variables
to the form as hidden input tags. Redirect to the www_pay() method here.

sub getButton {
 my $self = shift;
 my $session = $self->session;
 my $payForm = WebGUI::Form::formHeader($session)
 . $self->getDoFormTags('pay')
 . WebGUI::Form::submit($session, {value => 'Karma' })
 . WebGUI::Form::formFooter($session);

271

WebGUI Developers Guide

 return $payForm;
}

Now you can write the payment processing method, which checks to see
that the user has enough karma, then subtracts it for the payment.

sub processPayment {
 my ($self, $transaction) = @_;
 my $user = WebGUI::User->new($self->session, $transaction->get('userId'));
 if ($user->karma / $self->get('conversionRatio') > $transaction->get('amount')) {
 $user->karma(

$transaction->get('amount') * -1,
'Shop',
'Purchase of Order #'.$transaction->get('orderNumber')
);

 return (1, # success
 undef, # transaction code
 1, # status code
 'Success'); # status message
 }
 return (0, # success
 undef, # transaction code
 0, # status code
 'Insufficient Karma'); # status message
}

Finish up the driver with the method that processes the payment and
displays the thank you page.

sub www_pay {
 my $self = shift;
 my $cart = $self->getCart;

 # Make sure you can checkout the cart
 return "" unless $cart->readyForCheckout;

 # Complete the transaction
 my $transaction = $self->processTransaction();
 return $transaction->thankYou();
}

272

WebGUI Developers Guide

The finished class will look something like the following:

package WebGUI::Shop::PayDriver::Karma;

use strict;

use WebGUI::Shop::PayDriver;
use WebGUI::Exception;

use base qw/WebGUI::Shop::PayDriver/;

#---

sub definition {
 my $class = shift;
 my $session = shift;
 my $definition = shift;

 tie my %fields, 'Tie::IxHash';

 %fields = (
 conversionRatio => {
 fieldType => 'integer',
 label => 'Conversion Ratio',
 hoverHelp => 'The amount of karma it takes to equal 1 of the shop\'s currency
(dollars, yen, euros, etc)',
 defaultValue => 500,
 subtext => 'karma : 1 currency'
 },
);

 push @{ $definition }, {
 name => 'Karma',
 properties => \%fields,
 };

 return $class->SUPER::definition($session, $definition);
}

#---

sub getButton {
 my $self = shift;

273

WebGUI Developers Guide

 my $session = $self->session;
 my $payForm = WebGUI::Form::formHeader($session)
 . $self->getDoFormTags('pay')
 . WebGUI::Form::submit($session, {value => 'Karma' })
 . WebGUI::Form::formFooter($session);

 return $payForm;
}

#---

sub processPayment {
 my ($self, $transaction) = @_;
 my $user = WebGUI::User->new($self->session, $transaction->get('userId'));
 if ($user->karma / $self->get('conversionRatio') > $transaction->get('amount')) {
 $user->karma(
 $transaction->get('amount') * -1,
 'Shop',
 'Purchase of Order #'.$transaction->get('orderNumber')
);
 return (1, # success
 undef, # transaction code
 1, # status code
 'Success'); # status message
 }
 return (0, # success
 undef, # transaction code
 0, # status code
 'Insufficient Karma'); # status message
}

#---

sub www_pay {
 my $self = shift;
 my $cart = $self->getCart;

 # Make sure you can checkout the cart
 return "" unless $cart->readyForCheckout;

 # Complete the transaction
 my $transaction = $self->processTransaction();
 return $transaction->thankYou();

274

WebGUI Developers Guide

}

1;

275

WebGUI Developers Guide

Writing Shipping Drivers
Shipping drivers allow you to calculate and charge for shipping costs, and
in some cases tie into third-party shipping providers such as UPS or
FedEx.

API Highlights

WebGUI comes with one shipping driver, FlatRate, which can calculate
most basic shipping costs, but does not tie into any specific shipping
provider. It is great reference material that you should have a look at and
take the time to understand before you start writing your own shipping
driver. When you are ready to write your own shipping driver, there are
several parts of the API you should be aware of, and that's what this
section is about.

The Master Classes

Just like with writing payment drivers, before you start writing your own
shipping driver subclass, check out WebGUI::Shop::Ship and
WebGUI::Shop::ShipDriver. Ship is the management interface for all
ShipDrivers. ShipDriver is the master class that you'll be subclassing to
create your own.

Ship hands off web requests to the ShipDrivers. It does this through its
www_do() method. Along the URL it looks like:

/home?shop=ship;method=do;driverId=XXXXX;do=someMethod

Note the bolded “someMethod” part of the URL. That refers to a
www_someMethod() method in your ShipDriver subclass. Generally
speaking you won't need this ability, but it's there if you do.

The Basics

There are really only two methods you should need to fill out in your
shipping drivers, unless you do shipment tracking integration with a third
party service. They are calculate() and definition().

● The calculate method is the true heart of a ShipDriver. This method

276

WebGUI Developers Guide

gets a reference to the cart, and from that calculates the shipping
cost on the products in the cart.

● The definition() method works just like the definition method in
PayDrivers and is very similar to the definition() methods in Assets
and Workflow Activities.

Free Shipping on Big Orders Example

Most shops would love it if their average order price were greater than
$100. You can actually encourage that behavior using a custom shipping
driver. Let's build a driver where the users will pay a base shipping fee of X
and Y per item, unless the transaction is worth Z. For example, they will
pay a base fee of $5 + $2 per item unless their transaction is > $100.

First, build the definition() method so you can define X, Y, and Z.

sub definition {
 my $class = shift;
 my $session = shift;
 WebGUI::Error::InvalidParam->throw(error => q{Must provide a session variable})
 unless ref $session eq 'WebGUI::Session';
 my $definition = shift || [];
 tie my %fields, 'Tie::IxHash';
 %fields = (
 baseFee => {
 fieldType => 'float',
 label => 'Base Fee',
 hoverHelp => 'The amount of shipping applied to all orders.',
 defaultValue => 5.00,
 },
 perItemFee => {
 fieldType => 'float',
 label => 'Per Item Fee',
 hoverHelp => 'The additional shipping charge per item.',
 defaultValue => 2.00,
 },
 freeThreshold => {
 fieldType => 'float',
 label => 'Free Threshold',
 hoverHelp => 'The total amount of the order before shipping is free.',
 defaultValue => 100,
 },

277

WebGUI Developers Guide

);
 my %properties = (
 name => 'Free Shipping On Big Orders',
 properties => \%fields,
);
 push @{ $definition }, \%properties;
 return $class->SUPER::definition($session, $definition);
}

Now that you have the properties to work with, you can define your
calculate() method.

sub calculate {
 my ($self, $cart) = @_;

my $quantityOfShippableItems = 0;
foreach my $item (@{$cart->getItems}) {

my $sku = $item->getSku;
if ($sku->isShippingRequired) {

$quantityOfShippableItems += $item->get('quantity');
}

}
my $cost = 0;
if ($quantityOfShippableItems > 0) {

$cost = $self->get('baseFee') + ($quantityOfShippableItems * $self-
>get('perItemFee'));

}
if ($cost > $self->get('freeThreshold')) {

return '0.00';
}

 return sprintf "%.2f", $cost;
}

The finished module should then look something like this:

package WebGUI::Shop::ShipDriver::FreeShippingOnBigOrders;

use strict;
use base qw/WebGUI::Shop::ShipDriver/;
use WebGUI::Exception;

=head1 NAME

278

WebGUI Developers Guide

Package WebGUI::Shop::ShipDriver::FreeShippingOnBigOrders

=head1 DESCRIPTION

This driver allows free shipping on big orders.

=head1 SYNOPSIS

=head1 METHODS

See the master class, WebGUI::Shop::ShipDriver for information about
base methods. These methods are customized in this class:

=cut

#---

=head2 calculate ($cart)

Returns a shipping price. Calculates the shipping price using the following formula:

 baseFee + (perItemFee * item quantity) || 0 if (cart > freeThreshold)

=head3 $cart

A WebGUI::Shop::Cart object. The contents of the cart are analyzed to calculate the
shipping costs. If no items in the cart require shipping, then no shipping
costs are assessed.

=cut

sub calculate {
 my ($self, $cart) = @_;

my $quantityOfShippableItems = 0;
foreach my $item (@{$cart->getItems}) {

my $sku = $item->getSku;
if ($sku->isShippingRequired) {

$quantityOfShippableItems += $item->get('quantity');
}

}
my $cost = 0;
if ($quantityOfShippableItems > 0) {

$cost = $self->get('baseFee') + ($quantityOfShippableItems * $self-

279

WebGUI Developers Guide

>get('perItemFee'));
}
if ($cost > $self->get('freeThreshold')) {

return '0.00';
}

 return sprintf "%.2f", $cost;
}

#---

=head2 definition ($session)

Add baseFee, perItemFee, and freeThreshold properties.

=cut

sub definition {
 my $class = shift;
 my $session = shift;
 WebGUI::Error::InvalidParam->throw(error => q{Must provide a session variable})
 unless ref $session eq 'WebGUI::Session';
 my $definition = shift || [];
 tie my %fields, 'Tie::IxHash';
 %fields = (
 baseFee => {
 fieldType => 'float',
 label => 'Base Fee',
 hoverHelp => 'The amount of shipping applied to all orders.',
 defaultValue => 5.00,
 },
 perItemFee => {
 fieldType => 'float',
 label => 'Per Item Fee',
 hoverHelp => 'The additional shipping charge per item.',
 defaultValue => 2.00,
 },
 freeThreshold => {
 fieldType => 'float',
 label => 'Free Threshold',
 hoverHelp => 'The total amount of the order before shipping is free.',
 defaultValue => 100,
 },
);

280

WebGUI Developers Guide

 my %properties = (
 name => 'Free Shipping On Big Orders',
 properties => \%fields,
);
 push @{ $definition }, \%properties;
 return $class->SUPER::definition($session, $definition);
}

1;

281

WebGUI Developers Guide

Appendix 1: Advanced Install Scripts for Assets
As mentioned in the chapter on writing wobjects, there is an additional step
you should add to your install methods that is not included in the
_NewWobject.skeleton class, which is importing all of the default templates
for your asset. This section details one way to do this which allows your
templates to not only be automatically imported, but also updated without
the need for manually copying and pasting, or committing.

The first step is to define a metadata scheme for your templates. By adding
a few properties to the beginning of each template you can tell your code
how it should be imported. In the example, each metadata property is
prefaced with a pound sign (#). Your templates will look something like this:

#title=Default New Asset Template
#namespace=NewAsset/view
#assetId=NewAsset00000000000001

<tmpl_if session.var.adminOn><p><tmpl_var controls></p></tmpl_if>
<tmpl_if displayTitle><h2><tmpl_var title></h2></tmpl_if>
<tmpl_if message>
 <div class="error"><tmpl_var message></div>
</tmpl_if>

~~~

<style>
</style>

Store all such templates in a folder with .tmpl extensions.

/data/WebGUI/docs/NewAsset/templates/view.tmpl

Now, add some code which reads the directory and parses the template 
looking for the title, namespace, and assetId of your templates, as well as 
the body and head tags.

Start by exporting a new method:

use base 'Exporter';
our @EXPORT = qw(install uninstall upgrade);
use WebGUI::Session;

282 



WebGUI Developers Guide

Now, update the install method to additionally install your templates.

sub install {
my $config      = $ARGV[0];
my $home        = $ARGV[1] || "/data/WebGUI";
my $templateDir = $ARGV[2] || "$home/docs/NewAsset/templates";
unless ($home && $config) {
    die "usage: perl -MWebGUI::Asset::Wobject::NewAsset -e install 

www.example.com.conf\n";
}

#Open the session
print "Installing asset.\n";
my $session = WebGUI::Session->open($home, $config);

              my $db         = $session->db;
    
              #Change the user session to the admin

$session->user({ userId=>3 });

#Add the asset to the config file
$session->config->addToArray("assets","WebGUI::Asset::Wobject::NewAsset");

# Create asset table
              $db->write("create table if not exists NewAsset (

assetId varchar(22) binary not null,
revisionDate bigint not null,
primary key (assetId, revisionDate)

)");

              # Create a folder asset to store the default template
my $importNode = WebGUI::Asset->getImportNode($session);
my $newFolder  = $importNode->addChild({

className   =>"WebGUI::Asset::Wobject::Folder",
title              => "New Asset Folder",
menuTitle    => "New Asset Folder",
url                => "new_asset_folder",
groupIdView =>"3"

},"NewAssetFolder00000001");

#Install the default templates
importTemplates($session,$templateDir,$newFolder);

#Commit the version tag containing the folder and all the templates

283 



WebGUI Developers Guide

my $tag = WebGUI::VersionTag->new($session, WebGUI::VersionTag-
>getWorking($session)->getId);
              if (defined $tag) {

    print "Committing tag\n";
    $tag->set({comments=>"Folder and Asset Templates created by Asset Install 

Process"});
     $tag->requestCommit;
}

#Close the session
$session->var->end;
$session->close;
print "Done. Please restart Apache.\n";

}

Note that another property was added that can be passed in, which is the 
location of the template directory. A default location has also been created 
for it. Additionally, code is added in the install portion which creates a new 
folder for which you've hardcoded an assetId. It is hard coded so you can 
later locate it to add, update, or remove templates.

Finally, a new method is added called importTemplates, which is used to do 
the template import. Once the import is complete, the folder and all the 
templates are committed.

The next thing to do is to update the uninstall method:

sub uninstall {
my $config = $ARGV[0];
my $home   = $ARGV[1] || "/data/WebGUI";
unless ($home && $config) {
       die "usage: perl -MWebGUI::Asset::Wobject::NewAsset -e uninstall 

www.example.com.conf\n" ;
}

#Open the session
print "Uninstalling asset.\n";
my $session = WebGUI::Session->open($home, $config);
my $db      = $session->db;

#Change the user session to the admin
$session->user({userId=>3});

284 



WebGUI Developers Guide

#Add the asset to the config file
$session->config-

>deleteFromArray("assets","WebGUI::Asset::Wobject::NewAsset");

#Remove the assets from the site
my $rs = $db->read("select assetId from asset where 

className='WebGUI::Asset::Wobject::NewAsset'");
while (my ($id) = $rs->array) {
       my $asset = WebGUI::Asset->new($session, $id, 

"WebGUI::Asset::Wobject::NewAsset");
       $asset->purge if defined $asset;
}

#Remove the templates and the template folder
my @templateIds = $db->buildArray(q|

                     select distinct assetId from template where namespace in ('NewAsset/view')
               |);

push(@templateIds,"NewAssetFolder00000001");
foreach my $templateId (@templateIds) {
      my $asset = WebGUI::Asset->new($session, $templateId, 

"WebGUI::Asset::Wobject::NewAsset");
      $asset->purge if defined $asset;
}

# Drop asset table
$session->db->write("drop table NewAsset");

# Close the session
$session->var->end;
$session->close;
print "Done. Please restart Apache.\n";

}

Additional code is added to remove the templates and template folder.

Finally, add a new method which simply updates the templates. This makes 
it easy to update your templates during development, as well as distribute 
upgrades to your code.

sub upgrade {
    my $config          = $ARGV[0];
    my $home           = $ARGV[1] || "/data/WebGUI";

285 



WebGUI Developers Guide

    my $templateDir = $ARGV[2] || "$home/docs/NewAsset/templates";
    unless ($home && $config) {
           die "usage: perl -MWebGUI::Asset::Wobject::NewAsset -e upgrade 
www.example.com.conf\n";
    }
    
    #Open the session
    print "Updating asset.\n";
    my $session = WebGUI::Session->open($home, $config);
    $session->user({userId=>3});

    #Install the default templates
    importTemplates($session,$templateDir,WebGUI::Asset-
>new($session,"NewAssetFolder00000001"));

    #Commit the version tag containing the templates
    my $tag = WebGUI::VersionTag->new($session, WebGUI::VersionTag-
>getWorking($session)->getId);
    if (defined $tag) {
          print "Committing tag\n";
          $tag->set({comments=>"Template updated by Asset Upgrade Process"});
          $tag->requestCommit;
    }

    #Close the session
    $session->var->end;
    $session->close; 
    print "Done.\n";
}

The additional methods used to import templates are displayed below. 
Please note that this is only one way you might accomplish this. WebGUI 
used to use an import system similar to this one, but now imports 
packages of templates directly, allowing you to make changes directly on 
the site and distribute them in WebGUI native package format.

#-----------------------------------------------------------------
sub importTemplates {
    my $session     = shift;
    my $templateDir = shift;
    my $folder      = shift;
    my $quiet       = 0;
    

286 



WebGUI Developers Guide

    #Open the template directory
    return 0 unless (opendir (DIR,$templateDir));
    
    #Set the slash variable depending on the operating system
    my $slash;
    if ($^O =~ /^Win/i || $^O =~ /^MS/i) {
        $slash = "\\";
    } else {
        $slash = "/";
    }
    
    #Read the files in the template directory
    my @files=readdir(DIR);
    closedir(DIR);
    
    #For each file in the template directory
    foreach my $file (@files) {
        #Skip it if the file isn't valid
        next if ($file eq "." || $file eq ".." || !isValidTemplateFile($file));
        #Create a path to the file and open it

    my $pathToFile = $templateDir.$slash.$file;
    unless ( open (FILE, $pathToFile) ) {
        print "Could not open $pathToFile.  Skipping Template $!\n" unless ($quiet);
        next;
    }
    #Set up some defaults
    my $title        = "Default Template";
    my $namespace    = q{};
    my $assetId      = q{};

                  my $settingId    = q{};
    my $templateFile = q{};

                  my $headBlock    = q{};
    my $head         = 0;
    #Loop over each line of the template and process meta data, head, and body
    while (<FILE>) {
        my $line = $_;
        my $char = "#";

                      if($line =~ m/^$char[^=<]+=/){
        my $setting = substr($line,1);

    my ($key,$value) = split("=",$setting);
                $key = lc($key);
            
                if($key eq "namespace") {

287 



WebGUI Developers Guide

        $namespace = trim($value);
    } 

                elsif($key eq "title") {
        $title = trim($value);
    } 

                elsif($key eq "assetid") {
        $assetId = trim($value);
    }

                elsif($key eq "settingid") {
                    $settingId = trim($value);
                }
                next;

    }
            elsif ($line =~ m/^~~~$/) {

        $head = 1;
                next;

    } 
            elsif ($head) {

        $headBlock .= $line;
    } 

            else {
        $templateFile .= $line;

            }
    }
    #Check for errors in the metadata
    if($assetId eq "") {
        print "No Asset Id specified.  Skipping Template $file\n" unless ($quiet);

    next;
    }
  
    unless(isValidAssetId($assetId)) {
        print "Skipping $file.  Invalid assetId\n" unless ($quiet);

    next;
    }
  
    if($namespace eq "") {
        print "No Namespace specified.  Skipping Template $file\n" unless ($quiet);

    next;
    }
    #Process the templates
    print "Processing Asset $assetId\n" unless ($quiet);
  
    my $tmpl = WebGUI::Asset::Template->new($session,$assetId);

288 



WebGUI Developers Guide

        if($tmpl){
        print "Asset $assetId found.  Updating ... \n" unless ($quiet);
        $tmpl->update({

        template  => $templateFile,
                headBlock => $headBlock,

namespace => $namespace,
title     => $title,
menuTitle => $title

    });
} 

        else {
        print "Asset $assetId not found.  Creating ... \n" unless ($quiet);
        $folder->addChild({ 

            className   => "WebGUI::Asset::Template",
                namespace   => $namespace,
                title       => $title,

         menuTitle   => $title,
         ownerUserId => "3",
         groupIdView => "7",
         groupIdEdit => "4",
         isHidden    => 1, 

                template    => $templateFile,
                headBlock   => $headBlock,
            }, $assetId);     
        }
      
        #Set the asset Id in the settings table if set
        if($settingId) {
            my ($exists) = $session->db->quickArray("select count(*) from settings where 
name=?",[$settingId]);
            if($exists) {
                $session->setting->set($settingId,$assetId);
            } 
            else {
                $session->setting->add($settingId,$assetId);
            }
        }
   }
   return 1;
}

#-----------------------------------------------------------------
sub isValidTemplateFile {

289 



WebGUI Developers Guide

    my $filename = $_[0];
    my $quiet = 0;
    unless ($filename =~ m/(.*)\.(.*?)$/) {
        print "Skipping $filename.  Invalid File Format\n";

    return 0;
    }
    my $extension = $2;
   
    unless (lc($extension) eq "tmpl") {
        print "Skipping $filename.  Invalid template extension\n" unless ($quiet);

    return 0;
    }   
    return 1;
}

#-----------------------------------------------------------------
sub isValidAssetId {
    my $assetId = $_[0];
    unless (length($assetId) <= 22) {

    return 0;
    }
    return 1;
}

#-----------------------------------------
sub trim {
    my $string = $_[0];
    $string =~ s/^\s+//;
    $string =~ s/\s+$//;
    return $string;
}

290 



WebGUI Developers Guide

Appendix 2: Writing Patches for WebGUI
As you continue to develop applications or core modules for WebGUI, you 
may find yourself in the precarious situation of needing to update existing 
code or apply changes to core prior to an update. A good way to do this is 
to create a patch file and apply the patch to existing source.

Before getting started with writing patches, you'll need two packages: GNU 
patch and GNU diffutils. Your operating system vendor should provide 
these as part of the default installation. If not, you'll typically find pre-
compiled packages for them in your operating system's package 
collection. If neither option is available, you can learn more about the 
packages at their respective homepages. Learn more about GNU patch at 
http://www.gnu.org/software/patch/ ; learn more about GNU diffutils at 
http://www.gnu.org/software/diffutils/ . Windows users can download 
binary packages at http://gnuwin32.sourceforge.net/ . Before using either 
command for the first time, it is wise to read the documentation included 
with each.

diff and patch work together to allow developers to distribute changes to 
existing code. diff compares two files, or directory trees, given as 
command line arguments and outputs a summary of how the two differ 
from one another. This summary is encoded in one of several formats. By 
default, diff outputs a format compatible with the POSIX standard to the 
standard output. However, developers frequently use the context format (-c 
command line option) and the unified format (-u command line option) for 
patches intended for distribution to other developers.

This is only the first part of the process, however. One needs a program to 
apply the changes documented in the diff file. This chapter uses the patch 
program (first developed by Larry Wall, who also created Perl). patch reads 
the output of the diff command on standard input by default. patch has 
many options, including the -p option. This specifies how many directories 
to remove from the file paths in the diff output, used for locating the original 
and modified files on disk. See patch's documentation for more 
information.

Developing Against a Release

To develop new code based on the version of WebGUI you have installed, 
you'll need to make a copy of the existing code. This serves two purposes. 
First, it serves as a backup copy in case you somehow break WebGUI in a 
way you cannot fix. Second, it creates a pristine copy against which you'll 

291 



WebGUI Developers Guide

run the diff command.

To create a patch file for WebGUI, start by making a copy of the WebGUI 
core you'll be changing.

cp -R /data/WebGUI  /data/WebGUIOrig

Once you've made all of the changes to source, create a patch or diff file 
containing all of the changes made to code.

cd /data/WebGUI
diff -urN  /data/WebGUIOrig . > mypatch.diff

Before applying the patch to the new code, it is wise to verify that the patch 
will apply correctly. patch provides a command line option (--dry-run in 
newer versions, --check in older versions) to verify that the patch will apply 
correctly. For example:

patch -p0 --dry-run < /path/to/mypatch.diff

The output will be the same as if --dry-run had not been specified. patch 
will remain mostly quiet upon success, and will complain about errors. 
However, no files will be written or changed with the --dry-run option 
present.

This file can then be moved to a matching WebGUI distribution and applied 
to the source as follows:

cd /data/WebGUI
patch -p0 < /path/to/mypatch.diff

Patch will attempt to apply all of the changes specified in the diff file 
created to existing source, making it an extremely convenient way to patch 
for WebGUI.

Developing With the Latest Code

In addition to modifying code in the installed version of WebGUI, you can 
also develop against the latest code from WebGUI's Subversion repository. 
If you want to contribute new features to WebGUI, this is the way to go. 

292 



WebGUI Developers Guide

The procedure is largely similar to that described above, with a couple of 
exceptions. First, there is no need to make a copy of the source code. Your 
backup and basis of comparison live in the Subversion repository. Second, 
use svn diff rather than diff:

cd /data/WebGUI
svn diff > mypatch.diff

Patching remains the same. Remember to frequently update your checkout 
so that you're not developing against old code.

293 



WebGUI Developers Guide

Index
Index
Admin Console.......................................................52, 53, 106, 188, 189, 239
Admin Console.................................................................................................

settings. 52, 54, 55, 80, 102, 106, 112, 113, 114, 115, 117, 120, 123, 124, 
139, 140, 141, 142, 148, 149, 151, 162

admin mode..........................................................................................40, 191
Apache.24, 38, 60, 61, 62, 64, 65, 66, 67, 70, 71, 72, 73, 148, 151, 165, 191
Apache..............................................................................................................

authentication...............................................................................60, 61, 62
authentication...............................................................................................

basic auth.......................................................................................61, 62
cookie based..................................................................................61, 62

authentication handler..............................................................................65
Authorization................................................................................61, 63, 64
authorization.................................................................................................

getAuth.................................................................................................63
authorization handler..........................................................................64, 65
constant....................................................................................................71
handlers....................................................................................................60

API..............................................................................................243, 269, 276
API Docs.......................................................................................................28

browser.....................................................................................................28
CPAN................................................................................28, 31, 32, 42, 44
cpan..............................................................................................................

install..............................................................................................31, 32
offline view................................................................................................28
Perldoc.............................................................................................31, 173
perldoc..........................................................................................................

function.................................................................................................31
WRE....................................................................................................31, 32

asset.....23, 26, 39, 42, 43, 45, 46, 49, 50, 51, 52, 53, 57, 58, 66, 68, 71, 76, 
77, 78, 83, 84, 86, 87, 88, 89, 90, 91, 96, 100, 106, 140, 148, 151, 152, 161, 
163, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 185, 186, 187, 188, 
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 
205, 209, 210, 212, 213, 219, 220, 221, 222, 223, 226, 229, 232, 233, 234, 
235, 236, 237, 239, 240, 241, 242, 282

add..........................................................................................................177

294 



WebGUI Developers Guide

address................53, 81, 82, 113, 114, 115, 169, 179, 190, 191, 237, 240
ancestor..........................................................................................195, 198
assetId.....88, 151, 176, 200, 201, 204, 210, 220, 228, 229, 234, 282, 284
attachment.............................................................................88, 90, 91, 92
child...............26, 50, 85, 87, 148, 192, 193, 194, 195, 197, 200, 229, 241
container.................................................................................................229
content.............................................22, 33, 42, 43, 46, 57, 60, 90, 91, 172
descendant.........................................................................50, 52, 194, 195
filter...........................................................................................69, 190, 191
ID...............................................................................................................52
isa...................................................................................................122, 241
lineage............................................................................................193, 194
metadata................................................................................191, 204, 282
object instance.................................................................................52, 107
parent.........................50, 86, 173, 191, 193, 194, 200, 201, 204, 229, 241
parent............................................................................................................

parentId......................................................................................193, 201
rank.................................................................................................198, 201
Recipe............204, 209, 210, 218, 220, 224, 226, 229, 230, 231, 232, 234
Related.....................................53, 112, 120, 193, 219, 233, 234, 241, 242
root...........................................................23, 33, 51, 52, 58, 193, 194, 195
skeleton..................................................................................................172
URL...........................................................................................................52

attachment control............................................................................88, 89, 91
attachment control............................................................................................

creating.....................................................................................................88
definition...................................................................................................88
deleting.....................................................................................................88
operation...................................................................................................88
reading......................................................................................................88

authentication.. .53, 60, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104, 106, 107, 
108, 109, 110, 112, 113, 114, 115, 117, 118, 119, 120, 121, 122, 124, 125, 
128, 129, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 148, 
151

constructor.....................................................................87, 96, 98, 99, 222
superclass....96, 98, 100, 102, 103, 105, 106, 107, 108, 109, 110, 111, 
112, 113, 115, 119, 121, 122, 123, 124, 125, 126, 128, 129, 131, 132, 
133, 134, 136, 137, 138, 139, 175, 182, 187, 188, 222, 231

encrypt............................................................................................107, 108
flag..........................................................................................................131
IP Address................................................................94, 100, 101, 102, 117
method...............................................................................................94, 95

295 



WebGUI Developers Guide

callable. .95, 99, 100, 102, 103, 113, 115, 121, 122, 124, 132, 136, 138
error message......................................................................................98
identifier.................................................96, 97, 110, 112, 113, 118, 141
init...................................................................................95, 97, 100, 101
login......................................................................................................95
userId....................................................................................................98
username..............................................................................................98
warning message.................................................................................98

Password......60, 62, 63, 98, 102, 104, 105, 106, 108, 109, 110, 118, 119, 
121, 122, 123, 124, 126, 129, 131, 133, 134, 135, 138
plugin70, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 
113, 114, 115, 118, 119, 121, 122, 124, 125, 128, 132, 134, 136, 137, 
138, 139, 140, 141, 142, 148, 149, 151, 152, 202

install 113, 115, 121, 122, 140, 141, 142, 148, 149, 151, 220, 282, 283, 
284, 291, 292
installer...............................................................................140, 141, 200
template.............................................................................................140
uninstall......................................................140, 142, 148, 151, 219, 284
uninstaller...................................................................................140, 141
user object.............................................53, 97, 102, 108, 176, 177, 222

settings...........................................................102, 108, 113, 115, 117, 123
table........................................................................................119, 120, 122
types.......................................................................................................108
users table......................................................................108, 117, 118, 120
users table....................................................................................................

userProfileData table..........................................................................120
Cash............................................................................................................269
Chunking.....................................................................................................182
configuration file............23, 44, 45, 51, 52, 54, 140, 141, 142, 148, 149, 177
Configuration file...............................................................................................

default.......................................................................................................44
content handler........................................................71, 76, 77, 78, 79, 80, 81
Content handler................................................................................................

asset.........................................................................................................79
configuration.............................................................................................78
configuration.................................................................................................

default...................................................................................................78
Content.....................................................................................................79
Maintenance.............................................................................................80
Referral.....................................................................................................79
settings.....................................................................................................80
Setup........................................................................................................80

296 



WebGUI Developers Guide

shop..........................................................................................................79
coupons......................................................................................................262
CPAN.................................................................................................................

install.........................................................................................................32
credit card...................................................................................................269
donation......................................................................................................243
external payment systems..........................................................................270
Flat Discount Coupon.................................................................................243
form.36, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 102, 106, 107, 110, 113, 114, 
115, 116, 117, 121, 122, 123, 124, 126, 128, 131, 133, 135, 136, 139, 173, 
174, 175, 179, 185, 186, 187, 188, 189, 190, 191, 192, 202, 203, 206, 210, 
224, 226, 237
form...................................................................................................................

account creation.............................................................................124, 136
edit..........................................................................185, 186, 187, 188, 202
parameter.................................................................................................81
submission...................................................................................83, 85, 87
upload.......................................................................................................90

form control..................................36, 83, 84, 85, 87, 88, 89, 91, 92, 161, 174
form control.......................................................................................................

inheritance statement.......................................................................92, 139
skeleton....................................................................................................84

functional specification...............................................................166, 205, 206
functional specification.....................................................................................

User Model.............................................................................................205
global privilege properties..........................................................................100

groupToEdit............................................................................................100
groupToView...........................................................................................100
ipvisitor. 100, 101, 102, 106, 112, 113, 114, 115, 128, 131, 134, 135, 137, 
138, 142, 149
owner......................................................................................................100

GNU diffutil.................................................................................................291
GNU patch..................................................................................................291
GUI....................................................................................................42, 83, 91
GUID.......................................................................................................37, 96
hash reference. .103, 104, 105, 110, 119, 122, 123, 125, 126, 128, 132, 133, 
134, 173, 174, 181, 182, 195, 200, 222, 223, 228, 235, 240, 241
import..........................................................................................................243
international.................37, 162, 172, 174, 175, 210, 235, 236, 237, 238, 239
international......................................................................................................

placeholder.............................................................................................238
JSON...............................................................................................38, 45, 164

297 



WebGUI Developers Guide

macro....26, 37, 42, 43, 44, 45, 46, 47, 48, 52, 76, 77, 78, 81, 131, 235, 237, 
238

add............................................................................................................52
argument syntax.......................................................................................47
class........22, 45, 69, 85, 86, 87, 88, 90, 95, 161, 172, 173, 174, 175, 190, 
191, 192, 194, 196, 197, 212, 234, 235, 236, 241, 282
parts..........................................................................................................43
remove......................................................................................................52
skeleton.............23, 26, 42, 44, 45, 57, 60, 84, 91, 92, 167, 209, 212, 220
string.......19, 20, 21, 22, 39, 43, 45, 46, 87, 102, 117, 122, 124, 132, 136, 
176, 190, 228, 229, 235, 236, 238
subroutine...23, 33, 42, 43, 44, 47, 71, 72, 74, 80, 85, 86, 90, 92, 99, 138, 
171, 176, 189, 190
subroutine.....................................................................................................

handler..................................................................................................71
macros..............................................................................................................

key-value pairs.........................................................................................45
method..16, 21, 22, 23, 24, 34, 35, 36, 38, 40, 43, 45, 49, 52, 53, 58, 84, 85, 
86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 
121, 122, 123, 124, 125, 126, 128, 129, 131, 132, 133, 134, 136, 137, 138, 
139, 140, 141, 142, 148, 149, 151, 161, 162, 163, 164, 167, 169, 172, 176, 
177, 180, 181, 182, 183, 185, 186, 187, 190, 191, 194, 201, 202, 203, 207, 
209, 212, 213, 220, 221, 223, 224, 225, 226, 228, 229, 230, 231, 232, 234, 
235, 236, 237, 238, 282, 283, 284, 285, 286

Creating..................................................................................................138
definition.....84, 85, 92, 138, 161, 168, 172, 173, 174, 175, 180, 185, 186, 
187, 190, 203, 210, 212, 213, 234, 236, 239
displayLogin. 100, 101, 102, 103, 105, 106, 107, 110, 124, 128, 131, 133, 
134, 135, 136, 137, 138
duplicate.................................................................131, 230, 232, 233, 234
execute..................113, 115, 121, 122, 152, 153, 154, 160, 161, 163, 169
extend.....95, 104, 105, 106, 107, 108, 111, 122, 124, 126, 128, 129, 132, 
133, 136, 137, 139, 165, 202, 231, 234
importing...................................................................................................58
override...85, 100, 101, 102, 105, 107, 108, 111, 113, 121, 123, 124, 126, 
128, 129, 133, 136, 137, 139, 176, 181, 185, 186
overriding.........................................................95, 115, 132, 186, 187, 234
parameter.................................................................................................24
purge................................................................90, 151, 220, 230, 232, 233
settings...............................................................................................52, 53
template69, 85, 86, 93, 102, 103, 104, 105, 106, 107, 113, 114, 115, 124, 

298 



WebGUI Developers Guide

125, 126, 128, 132, 133, 134, 136, 140, 141, 142, 148, 149, 151, 178, 
179, 180, 181, 182, 183, 185, 191, 205, 210, 212, 213, 219, 220, 222, 
223, 225, 226, 234, 235, 236, 237, 238, 239, 240, 241, 242, 282, 283, 
284, 285, 286

mod_Perl.............................................................................24, 60, 67, 70, 141
mod_perl...........................................................................................................

mod_perl handler.........................................................................38, 61, 67
operation....................44, 78, 88, 94, 113, 115, 121, 123, 131, 181, 182, 196

output. . .16, 17, 18, 22, 42, 44, 47, 77, 78, 84, 87, 92, 110, 138, 165, 176, 
177, 182, 291, 292
output...........................................................................................................

redirect...............................................................................107, 111, 129
parameter.....39, 43, 44, 46, 48, 49, 51, 52, 53, 54, 56, 58, 78, 79, 85, 87, 
88, 90, 120, 164, 169, 190, 206

function..........................89, 92, 114, 117, 136, 137, 206, 223, 234, 238
key=value pairs....................................................................................48

package......45, 57, 58, 59, 60, 71, 73, 80, 81, 84, 91, 92, 94, 169, 175, 202, 
210, 239, 286, 291
package............................................................................................................

declaration..........................................................................................71, 92
export........................................................................................................58
exporting...................................................................................................60
import.......................................................................................................60
importing...................................................................................................58
Maintenance.............................................................................................57
name.........................................................................................................91
Version Tag.........................................................26, 58, 148, 152, 196, 200

payment driver....................................................................................269, 270
payment methods.......................................................................................269
Perl..16, 17, 18, 23, 25, 28, 31, 32, 35, 42, 43, 44, 45, 56, 57, 60, 67, 69, 71, 
80, 85, 86, 95, 108, 141, 209, 235, 236, 238, 291
product.......................................................243, 244, 245, 246, 247, 257, 277
recurring payments.....................................................................................270
request cycle..................................................................38, 60, 67, 68, 76, 77
scalar variables.............................................................................................21
session..23, 24, 33, 34, 35, 36, 37, 38, 39, 40, 41, 47, 51, 52, 54, 61, 65, 73, 
74, 76, 87, 90, 96, 97, 102, 106, 107, 108, 110, 111, 115, 116, 122, 123, 
128, 131, 134, 135, 137, 138, 148, 151, 163, 172, 176, 187, 191, 222

create........................................................................................................33
flag..............................................................................................55, 56, 128
initialize.....................................................................................................51
managing............................................................................................33, 90

299 



WebGUI Developers Guide

Request....................................................................................................33
session id............................................................................................34, 40
User..........................................................................................................33
User Id....................................................................................40, 47, 53, 96
User object...............................................................................................39
variable. 23, 24, 33, 35, 36, 38, 39, 55, 56, 80, 85, 90, 103, 104, 105, 106, 
115, 116, 117, 122, 123, 125, 126, 128, 131, 132, 133, 134, 135, 136, 
164, 165, 169, 180, 182, 191, 212, 220, 222, 223, 226, 234, 235, 238, 
239, 240, 241, 242
variables........................................................................................................

GET....................................................................................36, 39, 78, 79
POST..................................................................................36, 78, 79, 87

Session object 24, 33, 41, 43, 46, 48, 52, 62, 85, 91, 97, 105, 113, 128, 134, 
135, 137, 138, 172, 223, 236
session object...................................................................................................

argument stack.....101, 105, 109, 115, 116, 122, 123, 128, 131, 134, 135, 
137, 138
asset.........................................................................................................34
close...................................................................................................39, 41
config..................................................................................................35, 38
db..............................................................................................................35
default.......................................................................................................40
http............................................................................................................38
open..........................................................................................................40
output.......................................................................................................37
performance.............................................................................................41
request......................................................................................................37
scratch......................................................................................................39
setting.......................................................................................................38
stow..........................................................................................................39
template....................................................................................................39
User object...............................................................................................40
variables........................................................................................................

global....................................................................................................39
Shipping.....................................................245, 276, 277, 278, 279, 280, 281
shipping drivers..........................................................................................276
Shop. 243, 244, 245, 246, 247, 250, 253, 254, 255, 259, 262, 263, 264, 266, 
269, 270, 271, 272, 273, 274, 276, 277, 278, 279
shopping cart .............................................................................................262
sku....243, 244, 245, 246, 247, 249, 250, 253, 255, 257, 258, 259, 262, 263, 
264, 265, 266, 267, 278, 279
SKU API......................................................................................................243

300 



WebGUI Developers Guide

static files......................................................................................................37
style template...................................................................................81, 84, 85
subscription................................................................................243, 253, 254
Subversion repository.........................................................................292, 293
Technical Specification.......................................................167, 205, 206, 207
test method.............................................................................................18, 26

is.........................................................................................................19, 20
cmp_ok...........................................................................................20, 21

isn't...........................................................................................................20
like......................................................................................................19, 20
like.................................................................................................................

argument..............................................................................................20
OK........................................................................17, 18, 19, 20, 21, 72, 73
ok..................................................................................................................

problems........................................................................................18, 19
unlike.........................................................................................................20
variable...................................................................................18, 19, 20, 22

Testing........................................................15, 16, 17, 19, 21, 23, 26, 27, 165
testing...............................................................................................................

Advice.......................................................................................................26
coverage report........................................................................................25
coverage test............................................................................................25
Devel::Cover.............................................................................................25
effective....................................................................................................24
plan subroutine.........................................................................................18
Resources.................................................................................................27
skip.............................................................................................21, 22, 200
skip...............................................................................................................

subroutine.............................................................................................22
SKIP: block...............................................................................................22
subroutine...........................................................................................17, 19
TAP...............................................................................................16, 17, 22

diagnostics...................................................................17, 19, 20, 21, 26
Test Number.........................................................................................17
test plan..........................................................................................16, 18
test specific comments........................................................................17
Test Status............................................................................................17

Test::Deep.................................................................................................21
Test::More.........................................................................17, 18, 19, 21, 22
Test::More.....................................................................................................

cmp_deeply..........................................................................................21
testing module..................................................................................16, 17, 23

301 



WebGUI Developers Guide

permission................................................................................................23
Request....................................................................................................24
shortcoming..............................................................................................24

TODO: block.................................................................................................22
upgrade.......................................................................................................285
Upgrade............................................................................................................

maintenance.............................................................................................80
URL handler....................................................................67, 68, 69, 70, 71, 76

configuration........................................................52, 69, 80, 171, 177, 239
configuration.................................................................................................

default...................................................................................................69
content..70, 72, 79, 80, 152, 175, 177, 182, 213, 219, 220, 225, 226, 228, 
232
PassThru...................................................................................................70
reasons.....................................................................................................68
uploads.....................................................................................................71

permission......................................................................................71, 72
security.......................................................................................131, 225

user account...............................................106, 112, 117, 120, 121, 128, 137
User accounts...................................................................................................

creating...95, 108, 120, 121, 124, 126, 128, 129, 131, 139, 140, 141, 151, 
165, 200, 202, 204, 209, 210, 212, 223, 224, 226, 229, 230, 234

Utility script...........................................................................49, 51, 53, 66, 96
creating.....................................................................................................53
default.......................................................................................................54
files............................................................................................................49
lineage..........................................50, 52, 53, 194, 195, 196, 198, 199, 201
maintenance.............................................................................................49
search index.............................................................................................51
setting.................................................................................................54, 55
settings.....................................................................................................56
skeleton....................................................................................................53

WebGUI Shop.............................................................................243, 269, 270
WebGUI::Test..........................................................................................23, 24
WebGUI::Utility..............................................................................................23
widget...........................................................................................83, 202, 225
wobject.....202, 203, 204, 205, 207, 209, 210, 212, 220, 223, 224, 225, 226, 
228, 229, 230, 231, 232, 233, 234, 282
wobject.............................................................................................................

container.................................................................................................229
focus...............................................................................................203, 204
Install......................................................................................................212

302 



WebGUI Developers Guide

workflow......69, 113, 152, 153, 154, 156, 158, 159, 160, 161, 162, 163, 164, 
165, 167, 168, 170, 171, 200, 206
workflow ...........................................................................................................

instance API............................................................................................163
workflow activities................................................................26, 152, 164, 165
workflow engine.........................................................152, 153, 154, 162, 163

asynchronous.................................................................................152, 153
Spectre...................................................................154, 155, 158, 160, 165
spectre..........................................................................................................

cron job..............................................................................................156
Synchronous...................................................................................152, 153

 coupons.....................................................................................................262

303 


	Preface
	WebGUI Request Cycle
	mod_proxy
	mod_perl
	WebGUI
	URL Handlers
	Extras
	Uploads
	Content

	Content Handlers
	Upgrade
	Operations
	Setup
	Assets

	Output


	Testing WebGUI
	Writing Tests in Perl
	Test::More

	Testing in WebGUI
	WebGUI Testing Modules
	WebGUI::Test::Maker::Permissions
	WebGUI::PseudoRequest
	How Good are Your Tests?
	General Advice for Testing
	Other Testing Resources


	The WebGUI API
	The API Docs in HTML
	Using Perldoc to Read the Documentation
	Installing Third-Party Modules via CPAN

	Session
	User vs Request Session
	Managing a Session
	$session->asset
	$session->config
	$session->datetime
	$session->db
	$session->dbSlave
	$session->env
	$session->errorHandler
	$session->form
	$session->http
	$session->icon
	$session->id
	$session->output
	$session->os
	$session->privilege
	$session->request
	$session->scratch
	$session->server
	$session->setting
	$session->stow
	$session->style
	$session->url
	$session->user
	$session->var
	Dynamic Loading

	Writing Macros for WebGUI
	How Macros Work
	The Macro Skeleton
	Hello World
	Getting Argumentative: Accepting Parameters
	Now for Something Completely Different

	Utility Scripts
	Why Create Utility Scripts?
	Existing Utility Scripts
	fileImport.pl
	rebuildLineage.pl
	search.pl

	Useful API Functions
	WebGUI::Session
	open method
	config method
	settings method
	db method

	WebGUI::Asset
	new method
	newByUrl method
	getRoot method
	getLineage

	WebGUI::User
	new, newByUsername, newByEmail methods
	profileField method


	A Simple Utility Script : settings.pl
	Package Maintenance: Short but Powerful
	Apache Authentication: When a Script isn't a Script
	$ vim apacheAuth.pl


	URL Handlers
	The Request Cycle
	When to Use
	Configuration
	Examples 
	Hello World
	From the Core

	Custom Privileges

	Content Handlers
	Request Cycle
	When to Use
	Configuration
	Examples
	Hello World
	From the Core
	WebGUI::Content::Referral 
	WebGUI::Content::Asset
	WebGUI::Content::Shop
	WebGUI::Content::Setup
	WebGUI::Content::Maintenance

	Handling a Post from an Arbitrary Form


	Form Controls
	Hello World
	A Simple Example: Button
	Getting Attached: the Attachment Control
	Writing Your Own Form Control

	Authentication Plugins
	History
	General Authentication Structure
	Writing a Custom Authentication Plugin
	Auth Constructor
	$auth->session 
	$auth->user([$user_object])
	$auth->userId
	$auth->username
	$auth->error([$errorMessage])
	$auth->warning([$warningMessage])
	$auth->setCallable(\@callableMethods)
	$auth->isCallable([methodName])
	 init()

	displayLogin()
	$auth->displayLogin([postMethod, templateVariables])

	getLoginTemplateId()
	login()
	$auth->authenticate($username);
	$auth->getParams();

	logout()
	Authentication Data
	Settings
	editUserSettingsForm()
	editUserSettingsFormSave()

	User Data
	$auth->getParams 
	$auth->saveParams($userId,$authMethod,$propertiesHashRef)
	$auth->deleteParams()
	$auth->deleteSingleParam($userId,$authMethod,$fieldName)


	Creating User Accounts
	editUserForm()
	editUserFormSave()
	createAccount()
	createAccountSave()
	$auth->validUsername($username);

	displayAccount()
	$auth->displayAccount(postMethod,[templateVariables])

	deactivateAccount()
	$auth->deactivateAccount([postMethod])
	deactivateAccountConfirm()

	Creating Custom Methods
	Extending Existing Authentication Plugins
	Installing Your Authentication Plugin
	Manually Installing Your Authentication Plugin
	Automating Your Authentication Plugin Installation


	Workflow Activities
	The Workflow Engine
	Steps of WebGUI Workflow
	Synchronicity
	Workflow Engine Components
	Spectre and WebGUI Communicate

	WebGUI::Workflow::Activity API
	definition()
	States
	return $self->COMPLETE;
	return $self->ERROR;
	return $self->WAITING;

	execute() 

	WebGUI::Workflow::Instance API
	setScratch()
	getScratch()
	deleteScratch()

	Rules to Work By
	Workflow Activity Examples
	Hello World
	Email Poll Example
	Functional Specification
	Technical Specification
	The Code
	Configuration



	Assets
	The Bare Necessities: a Cliched Example
	Definition
	tab
	fieldType
	defaultValue
	label
	hoverHelp
	properties
	assetName
	icon
	tableName
	className
	autoGenerateForms

	Create the Database Table
	View Method
	Add the Asset to the Configuration Table
	Hello World


	Adding a Template
	getTemplateVars
	processTemplate
	prepareView 

	The Edit Form
	getEditTabs
	getEditForm
	processPropertiesFromFormPost
	www_edit

	More Definition Magic: Filters
	Tips, Tricks, and Things Left Unsaid

	Lineage
	The getLineage Method
	Query the Asset Tree
	addChild
	Rank and Depth

	Writing Wobjects
	History
	What is a Wobject?
	Getting Started
	Writing a Functional Specification
	Writing a Technical Specification

	Building Your Wobject
	Hello World
	Example: Recipe Catalog

	Installing Your Wobject
	Building Your Wobject
	www_ methods
	Container Wobjects
	Finishing Up
	Wobject Inheritance

	Internationalization
	Placeholders and i18n

	Help
	Template Variables
	Related and ISA

	Writing SKU's
	API Highlights
	addToCart()
	Event Handlers
	The Numbers
	Display Helpers

	SKU's as Products
	Special Methods
	Book Example

	Recurring SKU's
	Special Methods
	Association Dues Example

	SKU's as Coupons
	Special Methods
	Member Discount Example


	Writing Payment Drivers
	API Highlights
	The Master Classes
	PayDriver Basics
	Recurring Methods

	Karma Payment Example

	Writing Shipping Drivers
	API Highlights
	The Master Classes
	The Basics

	Free Shipping on Big Orders Example

	Appendix 1: Advanced Install Scripts for Assets
	Developing Against a Release
	Developing With the Latest Code

	Index

